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Following the theoretical innovations of complementarity theory, management control studies have
investigated interdependencies between different management control practices. In this paper, we
compare the two dominant statistical specifications to test for the presence of an interdependency. We
show theoretically how the power of the demand and the performance specification varies with the level
of optimality in the sample and how those specifications are vulnerable to correlated omitted variable
bias. Our simulation results reveal that the demand specification is more robust to variations in opti-
mality and correlated omitted variables than the performance specification. We use these results to
formulate recommendations for future research into management control interdependencies.
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1. Introduction

The management accounting literature has investigated the fit
between accounting practices and the firms’ environment
(Chenhall, 2003; Otley, 2016), as well as the firms’ choices of
interdependent practices such as delegation and incentives
(Bouwens & Van Lent, 2007; Indjejikian & Matejka, 2012; Moers,
2006), or the levers of control (Simons, 1994, 2000; Widener,
2007). The interdependencies between different practices are the
reason a collection of practices form an accounting system (Grabner
& Moers, 2013; Milgrom & Roberts, 1995). When two practices
positively reinforce or complement each other, the firm benefits
from using them together, as a system. When two practices nega-
tively reinforce each other, they act as substitutes. In this paper, we
compare the two most common specifications in the empirical
literature to test whether practices are complements (or sub-
stitutes), i.e., the performance specification and the demand spec-
ification (Grabner &Moers, 2013), and examine the vulnerability of
these specifications to their underlying assumptions.
Masschelein).
anonymous reviewers, David
ustralian National University,
y of New South Wales, the
Australia, the Vienna Univer-
nference, and the 2018 AOS
kage in Maastricht.

evier Ltd. All rights reserved.

Moers, F., Testing for complem
20.101127
The performance specification tests whether the interaction
between two practices is positively correlated with performance
(Athey & Stern, 1998; Carree, Lokshin, & Belderbos, 2011; Grabner
& Moers, 2013; Hofmann & van Lent, 2017). For instance, the
interaction between delegation and accounting based incentives is
positively related to business unit performance. The performance
specification assumes that there are a “sufficient number” of firms
that deviate from the optimal level for the practices which allows
researchers to detect performance differences between optimal
and suboptimal accounting systems. The extreme version of this
assumption is that all firms make random choices. The demand
specification on the other hand tests whether two practices are
positively correlated with each other after controlling for envi-
ronmental factors (Arora, 1996; Grabner & Moers, 2013; Hofmann
& van Lent, 2017; Johansson, 2018). For instance, delegation and
accounting based incentives are correlated after controlling for
environmental factors. The demand specification assumes that
there are a “sufficient number” of firms that simultaneously choose
the optimal level of the practices taking into account the interde-
pendency and the firm’s environment. The extreme version of this
assumption is that all firms make optimal choices.

In observational samples neither the assumption of completely
randomly chosen practices nor the assumption of completely
optimal choices will hold (Brynjolfsson&Milgrom, 2013). While an
individual decision is either optimal or not, a non-optimal decision
can be closer or further from the optimal level. As a result, a sample
of those individual decisions can exhibit different levels of opti-
mality where higher levels of optimality imply more observations
entarities between accounting practices, Accounting, Organizations
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that are close to the optimal decision. The methodology literature
has treated the assumption about the level of optimality in a
sample as an untestable assumption and recommends that re-
searchers argue whether their chosen specification is appropriate
for their research setting. The demand specification is often seen as
more appropriate than the performance specification when one
decision maker has designed the entire accounting system, when
the optimal design is not too complicated, and when the decision
maker has had sufficient time and incentives to choose the optimal
system (Carree et al., 2011; Grabner&Moers, 2013; Hofmann& van
Lent, 2017; Johansson, 2018). The performance specification is often
deemedmore appropriatewhen it involves relatively new practices
and technologies that require experimentation (Bedford, Malmi, &
Sandelin, 2016; Carree et al., 2011). While these recommendations
are intuitive, their empirical validity is not clear. That is, it is not
clear how vulnerable each specification is to deviations from its
underlying assumption of (lack of) optimality and whether this
vulnerability differs between the two specifications. The key
questionwe address in this paper is whether the typical arguments
for choosing a specification are necessary and/or sufficient.

In addressing this question, we first show how the demand and
performance specification arise from the same underlying and
unobserved objective function. The objective function formalises
the performance effects of management accounting practices as
well as how those performance effects depend on other practices
and contingency factors. As a result, the objective function captures
the main insight of complementarity theory (Grabner & Moers,
2013; Milgrom & Roberts, 1995) and contingency theory
(Chenhall, 2003; Otley, 2016) and is thus the theoretical foundation
for a hypothesis test regarding interdependencies. We then show
the statistical problems that arise with the demand and perfor-
mance specification when the assumptions underlying these
specifications are not satisfied. First, the demand specification has
more power to detect an interdependency when management
control practices are closer to optimal while the performance
specification is more likely to detect an interdependency when the
control practices are further from optimal. But again, how close to
or how far from optimal the practices need to be to have sufficient
power is an open question. Second, while the correlated omitted
variable problem is widely recognised for the demand specification
(Arora,1996; Grabner&Moers, 2013; Hofmann& van Lent, 2017), it
is largely ignored (Grabner & Moers, 2013; Hofmann & van Lent,
2017) or thought of as non-existing for the performance specifi-
cation (Carree et al., 2011). We show that both specifications are
vulnerable to the same omitted variable bias when they do not
appropriately control for a contingency factor that affects both
practices. When all relevant practices and contingency factors are
observed, this bias can be easily addressed, although the most
commonly used variant of the performance specification unfortu-
nately does not address the bias. However, when not all contin-
gency factors are observed, it is an open question whether the two
specifications are equally vulnerable to correlated omitted
variables.

To investigate the robustness of both specifications to variations
in the level of optimality, we use a simulation approach. In doing
this, we focus on Type I errors (rejection of a true null hypothesis of
no complementarity) and power (or Type II errors, i.e., failure to
reject a false null hypothesis of no complementarity). The results
show that the demand specification has appropriate Type I error
rates while maintaining power to detect a real complementary
effect, even at low levels of optimality. In contrast, the theoretically
derived performance specification suffers from elevated Type I er-
ror rates at all levels of optimality and loses power to detect true
interdependencies at higher levels of optimality. In addition, the
performance specification as it is typically implemented in the
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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literature is biased when the practices are contingent on the same
environmental factor. Finally, in contrast to common assumptions,
even in the presence of correlated omitted variables, the demand
specification fares better than the performance specification.

This study contributes to the literature by providing three rec-
ommendations for studies that test for interdependencies between
management control practices. First of all, the demand specification
should generally be preferred over the performance specification in
an observational sample of firms. While researchers are typically
recommended to argue whether their chosen specification is
appropriate for their research setting, our findings indicate that the
use of the performance specification needs to be especially well-
substantiated. Even when performance data is available, it is still
advisable to report the demand functions before reporting the
performance specification (Aral, Brynjolfsson, & Wu, 2012;
Cassiman & Veugelers, 2006). Second, when theory and prior
research indicate that the practices are contingent on environ-
mental factors, studies should appropriately control for these fac-
tors. Because the management control literature has a rich history
of studying contingency effects, we believe most management
control settings will warrant appropriate controls for contingency
factors. Importantly, these controls are as relevant for the perfor-
mance specification as they are for the demand specification. In the
demand specification, controlling for contingency factors means
including the contingency variables as separate independent vari-
ables. In the performance specification, controlling for contingency
effects requires including the interaction of the contingency factors
with the management control practices. Of the published studies
using the performance specification following Grabner and Moers
(2013), only Bedford et al. (2016, 2019) appropriately control for
contingency factors. Third, because the performance specification is
vulnerable to Type I errors, we advise to usemore robust estimation
techniques than ordinary least squares.

The remainder of this paper is structured as follows. First, we
derive the demand and performance specifications from a common
objective function. Second, we explain and calibrate the simulation
approach. Third, we compare the robustness of the different
specifications in a simulation study. Fourth, we provide guidance
for researchers who estimate interdependencies. Last, we sum-
marise the simulation results and recommendations, and discuss
how future research can improve the estimation of
interdependencies.

2. Model and formal analysis

In this section, we present a firm’s objective function to model
the essential elements of both complementarity theory and con-
tingency theory. According to complementarity theory, the per-
formance effect of a management control practice depends on the
use of another practice. According to contingency theory, the per-
formance effect of the practice depends on the environment. The
theoretical model helps to make explicit the assumptions in the
two statistical specifications. We start with the assumption that a
firm has to decide on the level of two management accounting
practices which both depend on one environmental factor. We
represent the levels of the management accounting practices as x1
and x2 and the level of the environmental factor as z. We further
assume that performance, y, depends on a factor, n while the per-
formance effects of each management control practice further
depend on a factor ε1 and ε2 respectively. That is, there is variation
among firms in the extent to which each management control
practice affects performance. x1, x2 and z are observed by the
researcher but ε1, ε2, and n are not.

We illustrate the model with an example from the management
accounting literature where z stands for environmental
entarities between accounting practices, Accounting, Organizations
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uncertainty, one of the most commonly studied environmental
factor in the contingency literature. x1 and x2 are two commonly
studied management control decisions, the extent to which de-
cisions are delegated to middle level managers (henceforth dele-
gation) and the extent to which accounting measures are used to
evaluate and reward performance of the middle level managers
(henceforth accounting incentives). Finally, y is the financial per-
formance of the business unit. These four constructs have received
considerable attention in both the contingency and the comple-
mentarity literature (Chenhall, 2003; Grabner & Moers, 2013;
Otley, 2016). In the example, we cannot do justice to the rich the-
ories and measurement developed in the literature and therefore
the example should only be seen as an illustration of the objective
function. In addition, the linear form is a special case, but its
simplicity allows us to make our point without loss of generality.

y¼b0 þðb1 þg1zþ ε1Þx1 þðb2 þg2zþ ε2Þx2 þ b12x1x2

�1
2
d1x

2
1 �

1
2
d2x

2
2 þ n

(1)

The objective function (1) shows how profit, y, depends on
delegation and accounting incentives, x1 and x2, environmental
uncertainty z and the unobservable factors. The parameter b12
represents the complementarity between delegation and ac-

counting incentives (i.e. d
2y

dx1dx2
¼ b12, see Grabner and Moers

(2013)). Irrespective of which empirical test will be performed,
interdependence implies that b12s0 and this is what needs to be
theoretically substantiated. In this paper, we focus on specifications
to test the hypothesis that b12s0.2 An example of such a test is
whether the effectiveness of incentive contracts depends on the
level of delegation for managers (Indjejikian & Matejka, 2012;
Moers, 2006). The parameters g1 and g2 represent the contingency
effect of environmental uncertainty, z, for delegation, x1, and ac-
counting incentives, x2. For instance, g1 >0 implies that delegation
is more valuable for the firm with higher environmental uncer-
tainty while g2 <0 implies that accounting incentives are less
valuable with higher environmental uncertainty (Chenhall, 2003).
d1 and d2, which we assume to be positive, represent increasing
marginal costs to the practices.3

The objective function (1) formalises management accounting
theory. The key assumptions of complementarity theory and con-
tingency theory are captured by the parameters b12 and g1;g2
respectively. In order to test for a complementarity between dele-
gation and accounting incentives, we need to make additional as-
sumptions about the statistical model, which we discuss below. The
theoretical assumptions discussed above and the statistical as-
sumptions discussed below are the same for both the demand
specification and the performance specification.
2 Initially, we limit the paper to two-way complementarities for two reasons.
First, theory in management control typically does not predict higher order in-
terdependencies (for an exception outside of management accounting see Aral et al.
(2012)). Second, the paper’s main focus is on the consequences of deviations from
completely optimal and completely random practices for hypothesis tests. The
problems we identify apply to more complex hypothesis tests for higher order
interdependencies. For simplicity of exposition, we avoid the additional compli-
cations of testing for higher order interdependencies (Carree et al., 2011). In section
4.5, we consider contingency effects on the interdependencies (Grabner, 2014;
Grabner & Speckbacher, 2016; Matejka & Ray, 2017) and in section 4.4, we inves-
tigate an objective function with three practices and two-way interdependencies
(Indjejikian & Matejka, 2012).

3 d1 and d2 are the second derivatives of the performance effects of the practices.
In general, d>0 is a mathematical representation of decreasing marginal returns,
increasing marginal costs, or a combination of both. For simplicity and in line with
the specification in Grabner and Moers (2013), we interpret d as the parameter of
increasing marginal costs.

Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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We assume that ε1 and ε2 and n are independent which implies
that the model contains all contingency variables and all practices
that affect the performance of the two practices x1 and x2. The
objective function (1) is similar to the objective function in
Kretschmer, Miravete, and Pernίas (2012) with two exceptions.
First, we assume that the values of x1 and x2 are continuous while
Kretschmer et al. (2012) allow for binary practices. We return to the
issue of binary practices as an extension to the current model in
section 4.2.3 and 4.4. Second, we assume independence of the
unobserved factors. We will relax this assumption, when we
introduce the problem of correlated omitted variables further in
section 4.3.4 In the remainder of this section, wewill work with the
simple objective function with two practices and one environ-
mental factor.
2.1. Optimal level of practices

Profit maximising firms try to adopt the optimal level for each
practice. As a benchmark, we derive the optimal level for all prac-
tices by setting the first derivative of the objective function (1) to
each practice equal to 0 and then solve for each practice. This re-
sults in:

x*1¼
b1þg1zþb12x

*
2þε1

d1
¼d2ðb1þg1zþε1Þþb12ðb2þg2zþε2Þ

d1d2�b212

x*2¼
b2þg2zþb12x

*
1þε2

d2
¼d1ðb2þg2zþε2Þþb12ðb1þg1zþε1Þ

d1d2�b212
(2)

A number of conclusions can be drawn from the optimality
conditions (2). First, in the absence of a complementarity (b12 ¼ 0),
the optimal level of delegation, x*1, and the optimal level of ac-

counting incentives, x*2, are still correlated. The contingency effects
of environmental uncertainty introduce a relation between the
optimal level of delegation, x*1, the optimal level of accounting in-

centives, x*2, and environmental uncertainty, z. Second, in the
absence of a complementarity (b12 ¼ 0) and after controlling for
environmental uncertainty, there is no relation between the
optimal level of delegation and accounting incentives, i.e. the
conditional correlation, corðx*1

��z; x*2��zÞ ¼ 0. In contrast, in the pres-
ence of a complementarity, b12>0, the optimal level of delegation
positively correlates with the optimal level of accounting incentives
after controlling for z (Arora, 1996).

In what follows, we will refer to the observed correlations be-
tween the practices and the environmental variable. We define r12,
r1z, and r2z as the observed sample correlations between delega-
tion, x1, and accounting incentives, x2, between delegation, x1, and
environmental uncertainty, z, and between accounting incentives,
x2, and environmental uncertainty, z, respectively. In samples with
higher levels of optimality, the observed correlations are deter-
mined by equation (2). In samples where management control
practices are randomly chosen, the correlations are 0.

Finally, the second order condition for the optimality conditions

(2) equals d1d2 � b212 >0. The intuition behind this condition is that
the increase in marginal costs to delegation and accounting in-
centives needs to be relatively large so that the interdependency
does not dominate the optimal solution. That is, it avoids corner
solutions where the optimal use of the management control
4 Athey and Stern (1998) discuss the implications of relaxing the independence
assumption in more detail.

entarities between accounting practices, Accounting, Organizations
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practices is to use them to their full extent or not at all.5

2.2. Performance specification

The performance specification estimates the objective function
(1) directly. In essence, the stochastic form of function (1) is a
regression equation. With cross-sectional data, the closest
approximation to the objective function is the first of the following
three regression models.

y¼ bp10 þ
�
bp11 þgp11 z

�
x1 þ

�
bp12 þg2z

�
x2 þ bp112x1x2 þ dp11 x21

þ dp12 x22 þap1zþ np1

y¼ bp20 þ
�
bp21 þgp21 z

�
x1 þ

�
bp22 þg2z

�
x2 þbp212x1x2 þap2zþ np2

y¼ bp30 þ bp31 x1 þ bp32 x2 þ bp312x1x2 þ ap3zþ np3

The first specification captures all features of the objective
function (1) with the exception of the unobservable contingency
effects on delegation and accounting incentives, ε1 and ε2. Cross-
sectional data does not permit estimating the unobserved hetero-

geneity. In this specification, bp112 tests for the interdependency
between the management accounting practices. We are not aware
of any accounting studies using this specification, which we label
the performance 1 specification.

The second specification, which we label the performance 2
specification, is the correct specification for binary practices, i.e.,
when practices are either absent or present. In this case, the
quadratic terms, x2i , automatically drop out of the equation. While
investigating continuous practices, Bedford et al. (2016, 2019)
follow this specification as they control appropriately for contin-
gency factors and drop the quadratic terms in the specification. The
majority of the literature follows the third performance specifica-
tion, which also drops the controls for the contingency factors or
assumes that g1 ¼ g1 ¼ 0. This specification thus ignores the in-
sights from contingency theory. We call this specification perfor-
mance 3. In the remainder of this section, we explain the potential
problems with these three specifications.

2.2.1. Lack of power
All three specifications will suffer form the well known problem

that performance is no longer a function of the management
practices when firms optimally adopt interdependent practices
(Grabner & Moers, 2013). This can be illustrated using objective
function (1) and the optimality conditions (2). Whenwe set x1 ¼ x*1
and x2 ¼ x*2 in the objective function (1), i.e., the firm makes
optimal decisions, we find that profit, y, is fully determined by the
unknown parameters and environmental uncertainty, z, and profit
no longer depends on the value of the practices. Thus, observed
profit is not a function of observed delegation and observed ac-
counting incentives when all firms adopt the optimal system. With
optimal levels of delegation and accounting incentives, business
unit profit is only a function of environmental uncertainty and
there is no longer information about the practices in the perfor-
mance variable. This is what economists are referring to when they
say that one cannot examine performance effects of choices. The
point is not that there are no performance effects of adopting
5 In the main analysis of this paper, we will assume that the second-order con-
dition holds when the control practices are continuous. In Section 4.4 we relax this
assumption.
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management control practices, but rather that such effects cannot
be empirically detected.

The loss of power of the performance specification depends on
the level of optimality in the sample. A higher level of optimality
leads to stronger correlations between the control practices and the
contingency factor, and less independent information in the
observed practices about the observed profit. For a performance
specification to have sufficient power, there need to be a sufficient
number of firms that do not adopt the optimal level of the practices
(Bedford et al., 2016; Carree et al., 2011; Hofmann& van Lent, 2017).
However, the literature has not gone beyond this rule of thumb and
provides no guidance on how large the deviations from optimality
need to be. Our simulation study will provide an answer to this
question.

2.2.2. Correlated omitted variable
In this paper, we identify a second problem with the most

popular specification in the literature, performance 3, which follows
directly from the contingency effects. The specification omits the
terms x1z, x2z, x21, and x22. Although a full treatment of the omitted
variable bias is beyond the scope of this study, we illustrate the
problem for the special case where x1, x2, and z follow a multi-
variate standard normal distribution. Appendix A shows that the

bias for omitting x1z, x2z, x21, and x22 in the estimate bp312 is propor-
tional to the following components:

g1
covðx1x2; x1x2Þ

varðx1x2Þ
¼ g1

r2z þ r12r1z
1þ r212

g2
covðx1x2; x2zÞ
varðx1x2Þ

¼ g2
r1z þ r12r2z
1þ r212

d1
cov

�
x1x2; x

2
1

�
varðx1x2Þ

¼ d1
r12

1þ r212
d2
cov

�
x1x2; x

2
2

�
varðx2x2Þ

¼ d2
r12

1þ r212
(3)

where r12, r1z, and r2z are the observed sample correlations, as
defined before. Let us assume that there is no interdependency, i.e.,

b12 ¼ 0. The estimate bp312 , which equals b12 þ bias, is then affected

by the four components specified in (3). bp312 ¼ b12 ¼ 0 when the
observed correlations r12, r1z, and r2z are all zero, or in other words,
when firms just randomly pick their management control practices.
However, as explained in the previous section, contingency theory
implies that those empirical correlations between delegation, ac-
counting incentives, and environmental uncertainty are different
from 0 when firms are not completely ignorant of the optimal
levels. As a result, when environmental uncertainty is not appro-
priately controlled for, the performance 3 specification is vulnerable
to an omitted variable bias when testing for a complementarity
between delegation and accounting incentives. The intuition
behind the bias is as follows. If delegation, x1, and environmental
uncertainty, z, are correlated, the interaction between delegation
and accounting incentives, x1x2, and the interaction between ac-
counting incentives and environmental uncertainty, x2z, are also
correlated. As a result, when the contingency effect, x2z, is omitted
from the performance specification, the complementarity test,
x1x2, will be confounded by the contingency effect, even when
b12 ¼ 0. That is, a Type I error occurs. Note that this problem ex-
tends to the performance 1 and performance 2 specifications when
factors unobservable to the researcher affect both practices, which
we will address later.

Because the bias does not require perfectly optimal decisions
and follows directly from the contingency effect of environmental
entarities between accounting practices, Accounting, Organizations
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uncertainty on delegation (g1s0) and accounting incentives (g2s
0), this problem cannot be easily ignored in a typical management
accounting study. A special case of the omitted variable bias is the
omission of the quadratic terms d1x21 and d2x22 in performance 2.

Omission of these terms will bias the estimate of the bp212 with a
factor proportional to the correlation between delegation and
incentives.

The empirical and methodology literature has focused on this
bias in the demand specification (see also section 2.3) but has
largely ignored the problem of correlated omitted environmental
factors in performance specifications. However, in the above, we
showed that the performance specifications suffer from the exact
same bias in contrast to what has been argued in the methodology
literature (Carree et al., 2011).

2.3. Demand specification

The demand specification can take two forms, the regression
approach and the conditional correlation approach. The first
approach regresses one practice (e.g. delegation) on the other (e.g.
accounting incentives) and controls for environmental uncertainty.

x1 ¼ bd1 þ bd12x2 þ gd1zþ ε
d

The regression specification approximates the optimality con-

dition (2) where bd12 is the parameter that estimates the comple-
mentarity effect. An alternative and equivalent approach is to
estimate the conditional correlation between delegation and in-
centives. Prior research has used seemingly unrelated regressions
with x1 and x2 as dependent variables or separate regressions to
condition on environmental practices (Indjejikian&Matejka, 2012;
Matejka & Ray, 2017).6 In the remainder of this section, we will
explain the problems with the demand specification from the
perspective of the regression approach. Those problems equally
apply to the conditional correlation approach.

2.3.1. Lack of power
When b12s0 but firms do not take these interdependencies and

the contingency effects into account, the empirical correlations are

expected to be 0 and so is the regression estimate bd12. In the
remainder of this study, we consider this an unreasonable
assumption unless researchers can identify a natural experiment
for the adoption of the practices, x1 and x2. In the simulation study,
we will investigate what happens when we vary the extent to
which firms adopt the optimal level of delegation and accounting
incentives. When firms’ accounting systems deviate strongly from
the optimal accounting system, the empirical correlations will be
small and the demand specification will lack power to detect a real
interdependency.

2.3.2. Correlated omitted variable
The omitted variable bias for the demand function is a well

known problem (Arora, 1996; Grabner & Moers, 2013; Hofmann &
van Lent, 2017). When testing for the complementarity between
delegation and accounting incentives without controlling for
environmental uncertainty, the estimate of the interdependency,
6 The equivalence between the regression and the conditional correlation follows

from the regression anatomy (Angrist & Pischke, 2008). That is, bd12 ¼ covðx1 ;x2 jzÞ
varðx2 jzÞ ¼

corðx1;x2jzÞ stdevðx1Þ
stdevðx2 jzÞ. The semi-partial correlation is directly related to the partial or

conditional correlation:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cor2ðx1; zÞ

p
corðx1; x2jzÞ ¼ corðx1jz; x2jzÞ Thus, bd12 is

proportional to the conditional correlation corðx1jz; x2jzÞ.
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bd12, will be biased by gd
1
covðz;x2Þ
varðx2Þ . For instance, if environmental un-

certainty is positively associated with delegation (gd1 >0) and

negatively with accounting incentives (covðz;x2Þ<0), bd12 might be
negative even in the presence of a complementarity between
delegation and accounting incentives, i.e., b12 >0. Hence, the de-
mand specification needs to control for environmental uncertainty.
Similarly, a researcher has to control for all other contingency fac-
tors that effect both delegation and incentives.
2.4. Summary

A researcher’s decision to use a performance specification or a
demand specification is often framed as a trade-off between the
lack of power of the demand specification when the practices are
far from the optimal levels and the lack of power of the perfor-
mance specification when the practices are close to the optimal
levels (Aral et al., 2012; Grabner & Moers, 2013; Johansson, 2018).
While our analysis confirms the existence of this trade-off, one key
question that remains, is at what levels of optimality one method
dominates the other one. For example, how far from the optimal
levels should firm choices be before the performance specification
has more power than the demand specification and is thus
preferred?

An additional decision rule by researchers seems to be the
correlated omitted variable problem. The correlated omitted vari-
able bias of the demand specification is a well known problem
(Arora, 1996; Carree et al., 2011; Grabner & Moers, 2013), which
would suggest a preference for the performance specificationwhen
such omitted variables are expected to be present. However, our
analysis above highlights the often ignored omitted variable bias in
the performance specification. We show that both specifications
are vulnerable to the same omitted variable bias. That is, both
specifications will be biased if they do not control appropriately for
an environmental factor that is a contingency factor for both
practices of interest and when firms (to some extent) take into
account these contingencies when they design their accounting
system. A second question is therefore: how vulnerable is each
method to correlated omitted variables? To address these two
questions, we perform a simulation study.
3. Simulation study

In the simulation study that follows, we investigate the three
performance specifications and the demand specification with
respect to: (1) Type I errors, i.e., incorrectly rejecting a true null-
hypothesis; and (2) power, i.e., the ability to reject a false null-
hypothesis. Our main analysis focuses on the key question of how
the level of optimality affects Type I errors and power of the
theoretically appropriate demand and performance 1 specifications.
We further compare these specifications to the performance 2 and
performance 3 specification that researchers have used to test for a
complementarity between management accounting practices.

Following the main analysis, we test the robustness of the
findings to variations in the parameters of the objective function
(1). In addition, we investigate to what extent the demand speci-
fication is vulnerable to a violation of the second order optimality
condition and whether the properties of the specifications change
with binary practices. Lastly, we investigate to what extent the
theoretically appropriate demand and performance 1 specification
are vulnerable to correlated omitted variables.
entarities between accounting practices, Accounting, Organizations
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3.1. Simulation algorithm

In this section, we describe the simulation algorithm and cali-
brate the parameters to the observed correlations in nine man-
agement accounting studies that test for an interdependency
between management control practices and cite Grabner and
Moers (2013). The simulation algorithm is based on the objective
function (1) for a single firm from the formal analysis. For
completeness, we reproduce it here:

y¼b0 þðb1 þg1zþ ε1Þx1 þðb2 þg2zþ ε2Þx2 þ b12x1x2

�1
2
d1x

2
1 �

1
2
d2x

2
2 þ n

The structural parameters, b, g, and d are the same for each
simulated firm in a sample, which allows for a clean analysis of our
questions. For the baseline analysis, we set b0; b1; b2 equal to
0 because these parameters do not interact with the effect of the
interdependency. Keeping b1 ¼ b2 ¼ 0 also ensures that the mean
optimal level of the practices is in the middle of the distribution
that generates the values of the practices, andminimises any ceiling
or floor biases in the algorithm. The contingency effects are initially
set at g1 ¼ 0:33 and g2 ¼ 0. We will compare samples where the
contingency effect on the second practise varies from being absent
(g2 ¼ 0) to being positive (g2 ¼ 0:33) or negative (g2 ¼ � 0:33).

The values for z, ε1, and ε2 are different for each firm and are
simulated from a normal distribution with mean 0 and standard
deviations 1, sε1 , and sε2 respectively. The di’s and sεi ’s determine
the scale and unobserved heterogeneity of the effects, respectively,
and interact with the interdependency. In the baseline analysis, we
set these parameters equal to 1 and vary them in follow-up simu-
lations to investigate the robustness of the baseline analysis.
Finally, n is normally distributed with standard deviation, sn. The
baseline objective function in the simulation is thus:

y¼ð0:33zþ ε1Þx1 þ ε2x2 þ b12x1x2 �
1
2
x21 �

1
2
x22 þ n (4)

Note that in this baseline objective function, there is no omitted
variable bias in the four specifications with respect to environ-
mental factors. In the next section, we show how the baseline
scenario is a good reflection of a typical study in the management
accounting survey literature. To investigate whether the different
specifications have the power to detect a true effect while main-
taining nominal Type I error rates, we will compare samples with a
complementarity effect (b12 ¼ :25) to samples without a comple-
mentarity effect (b12 ¼ 0).

To examine how the level of optimality affects Type I errors and
power, we vary the level of optimality, O. The simulation algorithm
mimics the process where firms experiment with different com-
bination of delegation, x1, and accounting incentives, x2, and keep
the configuration that results in the highest business unit profit y.
When O is larger, a firm has experimented with more configura-
tions and therefore the probability that the firm selects the optimal
configuration of accounting practices is higher.

The full procedure for one observation is described in mathe-
matical form in algorithm (5). In order to generate a sample of 300
observations, the algorithm is run 300 times.
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z � N ð0;1Þ; εi � N ð0; sεiÞ
c0< o � O : xoi � U½ � 5;5�

c0< o � O : cyo ¼ b0 þ ðb1 þ g1zþ ε1Þxo1 þ ðb2 þ g2zþ ε2Þxo2

þb12x
o
1x

o
2 �

1
2
d1x

o2
1 � 1

2
d2x

o2
2

c0< o � O : yo � N ðcyo ; snÞ
ymax ¼ max

�
y1; y2;…; yO

�
if yo ¼ ymaxthen y ¼ yo; xi ¼ xoi

(5)

For each firm, the algorithm generates values for xo1, x
o
2 from two

independent uniform distributions between �5 and 5. The range
allows the randomly generated values for the practices to be far
from the optimal level in the baseline analysis. Next, the algorithm
calculates the performance, yo, according to the objective function
(1). For each firm, we repeat this process O times and keep the
values of the repetition for which yo is the highest as the obser-
vation in the sample. As a result, the more tries a firm has with
different accounting systems, i.e., the greater O, the more likely it is
they will adopt the optimal combination of the two practices. The
parameter O is the same for each observation in a sample and is the
key parameter capturing the probability of how close the firms in
the sample are to the optimal level of the practices.

In Fig. 1 we plot a sample of 300 observations of x1 and x2 for 6
levels of optimality, O ¼ 2;4;8;16;32;64 for the baseline scenario
with a complementarity (b12 ¼ 0:25). The figure shows the within
sample heterogeneity of the practices in a simulated sample. If we
take the samplewith O ¼ 64 as close to the optimal distribution, we
see that there are always a number of observations outside the
optimal distribution with lower levels of optimality. Nevertheless,
there are also observations that are closer to the optimal level for
each level of optimality. That is, increases in the level of optimality
increase the probability that an observation will be closer to
optimal which also shows in the stronger positive relation between
x1 and x2 for higher levels of optimality.
3.2. Calibration to empirical studies

In order to calibrate the simulation, we collect the correlations
of published survey studies that cite Grabner and Moers (2013) and
have an interdependency hypothesis. The median number of ob-
servations in the studies is 250 and the average is 265. To give the
methods the benefit of the doubt, the simulation will create sam-
ples of 300 firm observations where each observation follows the
algorithm above. Next, we collect the correlation matrix from 9
studies that report full correlation matrices with correlations be-
tween practices, and between practices and environmental factors
(Abernethy, Dekker, & Schulz, 2015; Bedford, Bisbe, & Sweeney,
2019; Bedford & Malmi, 2015; Dekker, Ding, & Groot, 2016;
Grabner, 2014; Grabner & Speckbacher, 2016; Heinicke, Guenther,
& Widener, 2016; Samagaio, Crespo, & Rodrigues, 2018; Sponem
& Lambert, 2016). To get an estimate of observed correlations in
empirical studies, we calculate the median and 90th percentile
absolute correlation between practices and between a practice and
a contingency factor for each study. We consider the median value
of those statistics to be typical for studies on interdependencies in
entarities between accounting practices, Accounting, Organizations



Fig. 1. The figure shows a scatterplot of the distribution of 300 observations of x1 and x2 for different levels of optimality, O ¼ 2;4;8;16; 32;64. The complementarity effect is
present (b12 ¼ 0:25). The decreasing marginal costs are set as d1 ¼ d2 ¼ 1. The effect of the environmental variable only affects one of the choices (g1 ¼ :33;g2 ¼ 0). The un-
observed variation parameters are set at sε1 ¼ sε2 ¼ sn ¼ 1:

Fig. 2. The figure shows the value of the correlation between x1 and x2 (Panel A), the correlation between x1 and z (Panel B), and the non-optimality ratio (Panel C), for 100 samples
for 6 different levels (2, 4, 8, 16, 32, 64) of the optimality parameter, O. The complementarity effect is either present (b12 ¼ 0:25) or absent (b12 ¼ 0). The decreasing marginal costs
are set as d1 ¼ d2 ¼ 1. The effect of the environmental variable only affects one of the choices (g1 ¼ :33;g2 ¼ 0). The unobserved variation parameters are set at sε1 ¼ sε2 ¼ sn ¼
1:

7 The total deviations from the optimal level conditional on the contingency

factor is calculated as the sum of ðx1 � Eðx*1
��zÞÞ2 for each observation in the sample,

where Eðx*1
��zÞ is given by the optimality condition (2). The amount of variation

explained by the unobserved factors, ε1 and ε2, can also be calculated from the

optimality conditions (2), i.e., Varðx*1
��zÞ ¼ d

2
2s

2
ε1
þb

2
12s

2
ε1

ðd1d2�b
2
12Þ

2 The non-optimality ratio is

then calculated as the ratio between the deviations from optimality not explained
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management accounting. Themedian absolute correlation between
two practices is 0.22 and the median 90th percentile correlation is
0.39. The median absolute correlation between a practice and an
environmental factor is 0.16 and the median 90th percentile cor-
relation is 0.30.

To illustrate the effect of the optimality parameter and the
strength of the associations generated by the simulation algorithm,
we generate 100 samples with each 300 observations under the
baseline scenario outlined above for 6 levels of optimality: O2
f2;4;8;16;32;64g. For each sample, we calculate three statistics to
illustrate that the simulated samples reflect a typical management
accounting study. We plot the statistics for each simulated sample
in Fig. 2. The first statistic is the correlation between x1 and x2
(Panel A) and the second is the correlation between x1 and z (Panel
B). The absolute correlation between x1 and x2 varies between
0 and 0.5 and is smaller than the median 90th percentile (0.39) in a
typical study except at the higher levels of optimality. Similarly the
correlation between x1 and z varies between 0 and 0.4 and is
smaller than the median 90th percentile (0.30) in a typical study
except at the higher levels of optimality. Hence, we conclude that
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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the associations in our simulations are representative for the
management accounting literature.

The third statistic is the non-optimality ratio and quantifies the
extent to which deviations from the optimal level x*1

��z cannot be
explained by the optimality conditions (2).7 The non-optimality
ratio measures how much of the variation in the practices is
caused by the algorithmic search process and how far the practices
in a sample are from the optimal levels. The resulting ratio is
comparable to an R2 statistic because the non-optimality ratio
equals 1 when the difference between x1 and x*1 can be fully
explained by the absence of optimality in a sample, and the ratio
by the unobserved factors and the total deviations from optimality.

entarities between accounting practices, Accounting, Organizations
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equals 0 when x1 ¼ x*1. Fig. 2 Panel C shows the ratio for the 100
samples for different levels of the optimality parameter O. The ratio
declines for higher values of the optimality parameter and for all
values of O at least 20% of the variation cannot be explained by the
optimality condition. In other words, the generated samples always
have substantial deviations from optimal practices, which should
give performance specifications a chance of detecting performance
differences between optimal and sub-optimal accounting systems.

3.3. Power and Type I error

In the next section, we will compare the power and Type I error
rate of the four specifications when varying the optimality
parameter, O. Because the accounting literature is concerned with
testing the hypothesis that there is a (no) complementarity be-
tween two management control practices, a focus on power and
error rates is appropriate. For completeness, we repeat the four
specifications here

x1 ¼ bd1 þ bd12x2 þ gd1zþ ε
d

y¼bp10 þ
�
bp11 þgp11 z

�
x1þ

�
bp12 þg2z

�
x2þbp112x1x2

þdp11 x21þdp12 x22þap1zþ np1

y¼bp20 þ
�
bp21 þgp21 z

�
x1þ

�
bp22 þg2z

�
x2þbp212x1x2þap2zþ np2;

y¼ bp30 þbp31 x1þbp32 x2þbp312x1x2þap3zþnp3

The b12 coefficients for each specification provide the test for the
presence of an interdependency. The simulation generates 1000
samples for each combination of parameters. For each combination,
we report the distribution of the t-statistic for the interdependency
coefficient and compare it to the traditional cut-off value for the 5%
level of significance (jtj>1:97). We also calculate the power and
Type I error rate of the specifications to investigate the perfor-
mance of the four specifications in more detail. The power is the
percentage of samples with a complementarity effect where the p-
value is lower than 0.05 and the estimated coefficient is positive.8

The Type I error is the percentage of samples without a comple-
mentarity effect where the p-value is lower than 0.05 (irrespective
of the sign of the estimated coefficient).

4. Results

4.1. Performance and demand specification

4.1.1. Power
Fig. 3 Panel A shows a boxplot for the distribution of t-statistics

for each type of test and each combination of parameters. The dot of
the boxplot shows the median t-statistic of the 1000 samples, the
gap between the whiskers shows the interquartile range, and the
ends of the whiskers show the minimum and maximum t-statistic.
Each boxplot can be compared to the zero line and the dotted lines
representing a 95% confidence interval around a null effect. When
8 An important caveat is that the power of a study will also be influenced by the
size of the effect, measurement error, random variation, and the number of ob-
servations in the study. In the simulations, we assumed a fixed effect (b12 ¼ 0:25),
no measurement error, fixed the parameters that control random variation, sε1 , sε2 ,
and sn , and the number of observations per sample. As a result, the absolute per-
centages in the results should be interpreted with caution. This study is mainly
interested in the relative differences between specifications, focusing on a clean
setting and a fair comparison.
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b12 ¼ 0:25, we expect the distribution of the t-statistic to be above
the dotted lines because it shows that the test reliably reports a
significant positive interdependency (power).

Fig. 3 Panel A reveals the basic trade-off between the demand
specification and the performance specification: with low levels of
optimality the performance function is more likely to detect a true
complementarity effect while the demand function is more likely to
detect a true complementarity effect with high levels of optimality
(Aral et al., 2012; Grabner & Moers, 2013; Johansson, 2018). The
boxplots of the t-statistics are above the 95% confidence interval for
the performance 1 specification with lower levels of optimality and
they are above the 95% confidence interval for the demand speci-
fication for higher levels of optimality.

Interestingly, even at relatively low levels of optimality, i.e., O ¼
4, the demand specification has similar power to the performance 1
specification. Fig. 2 shows that with O ¼ 4 the optimality condition
can at best explain 40% of the variation in the distance between the
observed level of the practices and the optimal level of the prac-
tices. This implies that, as long as firms avoid the worst possible
combinations of management accounting practices, the demand
specification is more likely to detect a true effect.

The performance 2 specification without the quadratic terms
fares worse than the performance 1 specification at lower opti-
mality levels. The boxplots fall almost entirely within the 95%
confidence interval around 0 with low levels of optimality and a
true effect. The omission of the quadratic terms decreases the
ability of the performance 2 specification to detect a real interde-
pendency (b12 ¼ 0:25) at lower levels of optimality. Surprisingly,
the performance 2 specification has more power to detect a real
interdependency than the performance 1 specification at higher
levels of optimality. The counterintuitive reason for this is that the
bias associated with the omission of the quadratic terms (see
equation (3)) inflates the estimate of the complementarity with a
factor proportional to the correlation between x1 and x2. In effect,
the bias in performance 2 inadvertently picks up the same signal, i.e.
the relation between the two practices, as the demand specifica-
tion. Nevertheless, in terms of power, the demand specification
dominates the performance 2 specification. The performance 3
specification performs as poorly as the performance 2 specification,
in terms of power.

To evaluate the demand and performance specifications in more
detail, we report the power of the four specifications in Table 1. The
results show that the “optimality trade-off” between the demand
specification and the performance specification that is discussed in
the literature (Aral et al., 2012; Grabner & Moers, 2013; Johansson,
2018) is really a second order problem. Both the demand and the
performance 1 specification are able to detect a true interdepen-
dency with more than 80% probability for low to medium levels of
optimality. However, the demand specification is more likely to
detect a true effect at higher levels of optimality. Strictly speaking,
the demand specification is more likely to detect a true effect at all
levels of optimality but the lowest level, i.e., at O ¼ 2. From a power
perspective, the demand specification dominates the performance 1
specification. Finally, the performance 2 and performance 3 specifi-
cations are not able to detect the true interdependency for most of
the parameter space under investigation, except at high levels of
optimality. As stated before, the power that these specifications
have at higher levels of optimality is due to the bias from omitting
the quadratic terms which depends on the correlation between x1
and x2. While this bias helps with increasing power, it comes at the
cost of high Type I error rates, as we show next.
4.1.2. Type I error
Fig. 3 Panel B shows a boxplot for the distribution of t-statistics
entarities between accounting practices, Accounting, Organizations



Fig. 3. t-statistic of the performance and demand specification to test for complementarities when there is a complementarity effect (b12 ¼ :25) in Panel A or a null effect (b12 ¼ 0)
in Panel B. The boxplots represent the median (the dot), the interquartile range (the gap), and the minimum and maximum (the whiskers). O is varied between 2, 4, 8, 16, 32, and 64.
The effect of the environmental variable, z, on the second choice is either absent (g1 ¼ :33;g2 ¼ 0), or negative (g1 ¼ :33 and g2 ¼ � :33).
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for each type of test and each combination of parameters. When
b12 ¼ 0, we expect the distribution of the t-statistic to be centred
on 0, as well as 95% of the distribution to be between the two
dotted lines. When the distribution is not centred on 0, the test is
biased.When the distribution is toowide, the test reports too many
significant interdependencies in the absence of a true effect (Type I
error).

Fig. 3 Panel B shows that the demand specification, the theo-
retically appropriate performance 1 and the performance 2 specifi-
cations have an average t-statistic close to 0 in the absence of an
interdependency. The boxplots are centred around the zero line for
these three specifications. Recall that the omission of the quadratic
terms does not bias the estimate of a complementarity in the
absence of the complementarity (b12 ¼ 0).

The performance 3 specification fares worse than all other
specifications. The omission of the interaction terms x1z and x2z
biases the estimate of the interdependency when g1g2s 0. The
bias can be easily seen in Fig. 3 Panel B. The distribution of t-sta-
tistics for samples without a complementarity effect no longer
centres on 0 when the environmental factor has a contingency ef-
fect on the performance of both practices and the bias increases
with higher levels of optimality. The bias is negative when g2 is
negative and positive when g2 is positive. The latter case is not
depicted in Fig. 3.

To evaluate the Type I errors of the demand and performance
specifications in more detail, we report the percentage of samples
for which the estimate of b12 is significantly positive or negative in
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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Table 1. Under the parameters in the simulation study, the demand
specification has Type I error rates slightly below or equal to 0.05.
This means that the number of false positives are consistent with
the nominal p-value of 5%. The theoretically appropriate perfor-
mance 1 specification tends to have error rates elevated by a factor
two to three relative to the demand specification. The most
worrying results are for the performance 2 and 3 specifications.
Dropping the quadratic effects increases the error rates in the
performance 2 specification to around 0.20, four times the nominal
error rate. The most commonly used specification in the literature,
performance 3, has even higher Type I error rates that increase with
higher levels of optimality andwhen the environmental factor has a
contingency effect on both practices. The misspecification in per-
formance 3 leads to a bias in the estimated coefficient for the
interdependency and thus the t-statistic. In conclusion, given the
parameters in the simulation study only the demand specification
rejects the null hypothesis at nominal 5% level of significance. The
theoretically derived performance 1 specification has elevated error
rates, and the two other performance specifications are even more
vulnerable to false positives.

4.1.3. Take-away of baseline simulation
The results of the simulation using the baselinemodel reveal the

following: In contrast to arguments put forward in the literature,
the demand specification has significant power at all levels of
optimality. The assumption regarding the level of optimality to
decide between specifications is a second-order consideration.
entarities between accounting practices, Accounting, Organizations



Table 1
Power and Type I error rate for baseline simulation.

specification g2 Level of Optimality

2 4 8 16 32 64

Power
demand �0.33 0.86 1.00 1.00 1.00 1.00 1.00
demand 0.00 0.84 1.00 1.00 1.00 1.00 1.00
demand 0.33 0.84 1.00 1.00 1.00 1.00 1.00
performance 1 �0.33 1.00 0.98 0.82 0.44 0.16 0.05
performance 1 0.00 1.00 0.99 0.81 0.45 0.17 0.06
performance 1 0.33 1.00 0.98 0.83 0.44 0.16 0.06
performance 2 �0.33 0.34 0.11 0.19 0.69 0.95 0.99
performance 2 0.00 0.33 0.10 0.19 0.69 0.96 0.99
performance 2 0.33 0.37 0.12 0.20 0.70 0.96 1.00
performance 3 �0.33 0.28 0.07 0.14 0.55 0.86 0.95
performance 3 0.00 0.35 0.12 0.25 0.75 0.97 0.99
performance 3 0.33 0.45 0.25 0.47 0.94 1.00 1.00
Type I
demand �0.33 0.04 0.03 0.04 0.05 0.04 0.04
demand 0.00 0.04 0.06 0.03 0.04 0.04 0.05
demand 0.33 0.04 0.04 0.05 0.05 0.05 0.05
performance 1 �0.33 0.15 0.15 0.15 0.16 0.15 0.15
performance 1 0.00 0.15 0.17 0.16 0.17 0.14 0.14
performance 1 0.33 0.14 0.14 0.16 0.15 0.13 0.14
performance 2 �0.33 0.20 0.18 0.18 0.16 0.20 0.25
performance 2 0.00 0.20 0.20 0.17 0.17 0.19 0.22
performance 2 0.33 0.20 0.18 0.18 0.16 0.18 0.24
performance 3 �0.33 0.22 0.19 0.23 0.28 0.39 0.48
performance 3 0.00 0.18 0.20 0.16 0.17 0.22 0.25
performance 3 0.33 0.20 0.20 0.22 0.30 0.42 0.45

Note.
Type I error rates and power for the demand and performance specifications at
different levels optimality: 2, 4, 8, 16, 32, 64. The parameters are the same as in
Fig. 3.
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Unless the researcher can argue that the sample has quasi-random
assignment of practices, the demand specification should be
preferred. In addition, the Type I error rates of the demand speci-
fication are consistent with the nominal p-value of 5%. The theo-
retically appropriate performance 1 specification has significant
power at low to medium levels of optimality, which is in line with
arguments in the literature. However, the problem with this spec-
ification is the elevated Type I errors. These Type I errors only get
worse once the performance specification is misspecified, as in
performance 2 and performance 3.

One way to interpret the elevated Type I errors of the perfor-
mance specifications is to think about how a reader should react
when observing a study with a significant positive interaction x1x2.
To demonstrate the problems with the performance 3 specification,
we provide one dramatic example forO ¼ 4 and g2 ¼ � 0:33. If we
assume that a priori, we are indifferent between a null effect and a
true interdependency of b12 ¼ 0:25, and we observe one study that
reports a significant positive interaction x1x2, the study is more
likely to be from a sample where the null holds than from a sample
where there is a true interdependency!

In sum, the results regarding power and Type I errors indicate
that the demand specification performs better on both dimensions
compared to all three performance specifications.
4.2. Parameter variations

In this section, we explore the robustness of the above conclu-
sions to variations in the parameters of the objective functions.
Given the large number of possible variations, we restrict ourselves
to theoretically driven comparisons. We do not consider the con-
dition O ¼ 64 in the following results because generating a sample
of O ¼ 64 is as computationally costly as generating a sample of
each of the other levels of optimality. Furthermore, the results in
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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Table 1 and Fig. 3 show that the results do not qualitatively differ
between O ¼ 32 and O ¼ 64.

4.2.1. Performance variation
We first investigate whether an increase in the variance of

performance, sn, changes the above conclusions. This increase in
variance has two possible effects. The first effect is a decrease in the
importance of the management practices for performance, which
decreases the power of the performance specification. The second
effect follows from the first. When the management practices are
less important, the level of optimality effects are less pronounced,
and the correlations between x1, x2, and z are weaker, which in turn
decreases the power of the demand specification and the omitted
correlated variable bias in the performance 2 and performance 3
specification.

To investigate the role of sn, we vary the parameter between 1, 2,
and 4 while keeping the other parameters the same as in Fig. 3. For
clarity of exposition, we limit the number of optimality variations
(O ¼ 2;8;32) and the number of variations of the contingency ef-
fect x2z (g2 ¼ � :33) in Fig. 4.

The results in Fig. 4 and Table 2 are qualitatively the same as the
results in Fig. 3 and Table 1. Surprisingly, in the presence of an
interdependency, the increase in performance variance hardly af-
fects the power of the demand specification. At all but the lowest
level of optimality, the demand specification correctly identifies the
interdependency for every simulated sample with a real interde-
pendency, although the t-statistics decrease with higher perfor-
mance variance. The drop-off in the t-statistic is steeper for the
performance 1 specification to the extent that power drops to
around 20% when O ¼ 32 and sn ¼ 4. In summary, these results
indicate that the impact of increasing the performance variance is a
major decrease in the power of the performance specifications and
only a minor decrease in the power of the demand specification.

Regarding Type I errors, we find that the demand, the perfor-
mance 1, and the performance 2 specification are unbiased. In
addition, the demand specification has false positive rates below or
close to the nominal rates, while the performance 1 specification
still has elevated Type I error rates. The performance 2 and perfor-
mance 3 specification exhibit the same problem as before, namely
elevated false positive rates as a result of misspecification. The in-
crease in unobserved performance variation does lessen the impact
of this bias. In summary, the conclusion that the demand specifi-
cation outperforms the performance specifications is not changed
when the noise in performance increases.

4.2.2. Marginal costs
In this section, we vary the size of the increase in marginal costs,

d1 ¼ d2. We keep the parameters equal for both management
control practices but they become smaller in size. There are two
consequences of lowering the increase in marginal costs. First,
decreasing d1 ¼ d2 increases the importance of the complemen-
tarity between the management control practices. Second, the bias
from omitting the quadratic terms is smaller. In the baseline sce-
nario, we used d1 ¼ d2 ¼ 1. In this section, we compare the baseline
scenario to two other values, i.e., 0.25 and 0. d1 ¼ d2 ¼ :25 is the
largest value for which the parameters violate the second-order

optimality condition b12 <
ffiffiffiffiffiffiffiffiffiffi
d1d2

p
. When the second-order opti-

mality condition is violated, the optimal level for the practices will
cluster towards 5 and -5 and away from 0. The extreme case is
when d1 ¼ d2 ¼ 0 which may impede the inference by the demand
specification even further.

Fig. 5 and Table 3 report the power and Type I error rate of the
different specifications for samples of firms with slowly increasing
(di ¼ :25) or fixed marginal costs (di ¼ 0). Because the results
entarities between accounting practices, Accounting, Organizations



Fig. 4. t-statistic of the performance and demand specification to test for complementarities when there is a complementarity effect (b12 ¼ :25) in Panel A or a null effect (b12 ¼ 0)
in Panel B. The boxplots represent the median (the dot), the interquartile range (the gap), and the minimum and maximum (the whiskers). O is varied between 2, 8, 32. The effect of
the environmental variable, z, on the second choice is negative (g1 ¼ :0:33 and g2 ¼ � :33).

Table 2
Power and Type I error rate with performance variation.

specification
g2 Level of Optimality

2 8 32

Power
demand �0.33 0.75 1.00 1.00
demand 0.33 0.75 1.00 1.00
performance 1 �0.33 0.98 0.53 0.20
performance 1 0.33 0.97 0.49 0.17
performance 2 �0.33 0.30 0.06 0.16
performance 2 0.33 0.32 0.05 0.14
performance 3 �0.33 0.25 0.04 0.12
performance 3 0.33 0.39 0.11 0.37
Type I
demand �0.33 0.04 0.05 0.04
demand 0.33 0.05 0.05 0.05
performance 1 �0.33 0.09 0.06 0.06
performance 1 0.33 0.08 0.06 0.07
performance 2 �0.33 0.12 0.07 0.07
performance 2 0.33 0.13 0.07 0.07
performance 3 �0.33 0.12 0.09 0.10
performance 3 0.33 0.14 0.08 0.11

Note.
Type I error rates and power for the demand and performance specifications at
different levels optimality: 2, 8, 32. The parameters are the same as in Fig. 4. Only the
results for sn ¼ 4 are reported.
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showed no trends for different values of g2, we aggregate the re-
sults over all values of g2 in the table. The power of the demand
specification is generally better for all but the lowest level of
optimality, while the performance 1 specification suffers from steep
decreases in power with higher levels of optimality. The demand
specification does suffer from slightly elevated false positives when
the marginal costs of the choices are constant or only increasing
slowly. However, the overall conclusions are unaffected.

4.2.3. Binary practices
An alternative approach to deal with accounting practices with

fixed or decreasing marginal costs is to treat them as binary de-
cisions, because the optimal decision will either be to use the
practice to its full extent or not use it at all. When the accounting
practices are binary, the quadratic terms in the performance 1
specification are no longer identified. Hence, we will compare the
demand with the performance 2 specification. In the demand spec-
ification, we have to take into account that the dependent variable
is now a binary outcome. Hence, we compare the linear probability
model we have used so far, to the logit and probit estimates of the
same specification. However, these alternative estimation methods
should produce the same results in our setting.

We simulate new samples for the parameters in the main
analysis with the following levels of optimality: 2, 4, 8, 16. The most
entarities between accounting practices, Accounting, Organizations



Fig. 5. t-statistic of the performance and demand specification to test for complementarities when there is a complementarity effect (b12 ¼ :5) in Panel A or a null effect (b12 ¼ 0)
in Panel B. The boxplots represent the median (the dot), the interquartile range (the gap), and the minimum and maximum (the whiskers). N is varied between 2, 8, 32. The effect of
the environmental variable, z, on the second choice is negative (g1 ¼ :33 and g2 ¼ � :33). The change in marginal costs varied between d1 ¼ d2 ¼ 0; :25; 1

Table 3
Power and Type I error rate and marginal costs.

specification
di Level of Optimality

2 8 32

Power
demand 0.00 0.99 1.00 1.00
demand 0.25 1.00 1.00 1.00
demand 1.00 0.85 1.00 1.00
performance 1 0.00 1.00 0.72 0.01
performance 1 0.25 1.00 0.23 0.00
performance 1 1.00 1.00 0.83 0.16
Type I
demand 0.00 0.05 0.06 0.05
demand 0.25 0.06 0.05 0.05
demand 1.00 0.04 0.05 0.04
performance 1 0.00 0.11 0.09 0.07
performance 1 0.25 0.14 0.10 0.11
performance 1 1.00 0.15 0.16 0.14

Note.
Type I error rates and power for the demand and performance specifications at
different levels optimality: 2, 8, 32. The parameters are the same as in Fig. 5. The
results are aggregated over the values for g2 (� 0:33, 0.33).

Table 4
Power and Type I error rate with discrete practices.

specification
Level of Optimality

2 4 8 16

Power
demand 0.27 0.71 0.95 0.99
logit 0.27 0.71 0.95 0.99
performance 2 0.54 0.43 0.23 0.10
probit 0.27 0.71 0.95 0.99
Type I
demand 0.05 0.06 0.05 0.05
logit 0.05 0.06 0.05 0.05
performance 2 0.05 0.04 0.05 0.05
probit 0.05 0.06 0.05 0.05

Note.
Type I error rates and power for the demand and performance specifications at
different levels optimality: 2, 4, 8, 16. The practices can only take two values: 1 and
� 1. d1 ¼ d2 ¼ 0. The results are aggregated over the parameter values of g2 (�
0:33, 0, 0.33).
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important change in algorithm (5) is that we generate the ac-
counting choices, xoi , no longer from a uniform distribution but let
them be �1 or 1 with equal probability. We also set the parameters
d1 and d2 equal to 0.

The results are shown in Table 4. Because the results again
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
and Society, https://doi.org/10.1016/j.aos.2020.101127
showed no differential trends for different values of g2, we aggre-
gated the results over all values of g2. The power of the tests is
lower for all tests compared to the same parameters in Table 1 for
continuous accounting practices. As before, we find that at all but
the lowest level of optimality, the demand specification has more
power to detect a true effect, independent of the functional form
used to estimate the complementarity. All specifications have
similar and acceptable Type I error rates. In this specific case, the
entarities between accounting practices, Accounting, Organizations



Fig. 6. t-statistic of the performance and demand specification to test for complementarities when there is complementarity effect (b12 ¼ :25), in Panel A or a null effect (b12 ¼ 0)
in Panel B. The boxplots represent the median (the dot), the interquartile range (the gap), and the minimum and maximum (the whiskers). O is varied between 2, 8, 32. The effect of
the unobserved environmental variable, w, on the choices varies from a strong correlation (q1 ¼ :3, q2 ¼ � :3), a medium correlation (q1 ¼ :3 and q2 ¼ � :2), or a weak correlation
(q1 ¼ :3, q2 ¼ � :1).

Table 5
Power and Type I error rate with correlated omitted variable.

specification
q2 Level of Optimality

2 8 32

Power
demand �0.3 0.84 1.00 1.00
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performance 2 specification does not suffer from elevated Type I
error rates. As before, with binary practices, we reach the same
conclusion that the demand specification is superior to the per-
formance specification as long as firms largely avoid accounting
systems where the relation between the practices is the opposite of
the optimal relation.
demand �0.2 0.84 1.00 1.00
demand �0.1 0.86 1.00 1.00
performance 1 �0.3 0.99 0.63 0.06
performance 1 �0.2 0.99 0.70 0.10
performance 1 �0.1 1.00 0.76 0.11
Type I
demand �0.3 0.06 0.07 0.12
demand �0.2 0.05 0.05 0.08
demand �0.1 0.04 0.05 0.06
performance 1 �0.3 0.18 0.21 0.21
performance 1 �0.2 0.17 0.20 0.18
performance 1 �0.1 0.14 0.18 0.16

Note.
Type I error rates and power for the demand and performance 1 specifications at
different levels optimality: 2, 8, 32. The parameters are the same as in Fig. 6.
4.3. Correlated omitted variable

In this section, we investigate to what extent an omitted
correlated environmental variable affects our conclusions for the
demand and performance 1 specification. The baseline simulation
showed that the omission of a contingency factor that affects the
performance of both practices, as in performance 3, leads to Type I
errors. However, this correlated omitted variable problem was due
to a misspecification, not due to not having access to the data about
the variable. To test the vulnerability of the demand specification
and the performance 1 specification to spurious correlations in a
well designed study, we run the following simulation: We intro-
duce a new unobserved (to the researcher) environmental factor w
that impacts the performance effect of x1 with q1 and the perfor-
mance effect of x2 with q2.

We set the parameters assuming a well designed study that
controls for most but not all of the environmental factors affecting
the performance of both choices. Based on the nine studies in the
calibration section, we set values for the contingency effect of the
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
and Society, https://doi.org/10.1016/j.aos.2020.101127
unobserved factor that reflect a large (q1 ¼ 0:3; q2 ¼ � 0:3), me-
dium (q1 ¼ 0:3; q2 ¼ � 0:2), and small (q1 ¼ 0:3; q2 ¼ � 0:1)
spurious correlation. The previous methodology literature has long
argued that an omitted environmental factor will bias the demand
specification. The negative bias due to the omitted correlated
entarities between accounting practices, Accounting, Organizations
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variable increases the probability of reporting a substitution effect
in the absence of a true effect and decreases the power to reject the
null hypothesis when there is a true complementarity.9 We theo-
retically argued above that under the same condition, i.e., q1q2s 0,
the performance specification will be biased as well. The results of
this simulation reveal to what extent both specifications are
vulnerable to this bias.

The results are reported in Fig. 6 and Table 5. These results are
consistent with our previous findings. The demand specification has
at all but the lowest levels of optimality more power to detect a true
interdependency than the performance 1 specification. One logical
finding is that the demand specification becomes vulnerable to the
omitted variable bias and thus higher Type I error rates at higher
levels of optimality. This effect is most pronounced with the largest
spurious correlation (q1 ¼ :3, q2 ¼ � :3) and O ¼ 32, where we
find that in 12% of the simulations with a null effect the demand
specification reports a significant effect. This finding reinforces that
the demand specification will only have appropriate Type I error
rates as part of a well designed study that controls for environ-
mental factors that affect both choices, especially when firms adopt
the optimal management controls. However, consistent with our
arguments, the performance 1 specification exhibits the exact same
bias and, as a result, the demand specification still has superior Type
I error rates compared to the performance 1 specification.
10 The four possible corner solutions are: (1) Fully adopt practice 1 and 2, (2) Fully
adopt practice 1 and do not adopt practice 2 at all, (3) fully adopt practice 2 and do
no adopt practice 1 at all, and (4) do not adopt practice 1 and 2 at all.
11 vy
4.4. Robustness and limitations of the demand specification

In this section we explore under which part of the parameter
space the demand specification is less robust than the performance
specification. In addition, we investigate whether our main
conclusion that the demand specification generally dominates the
performance specification, holds for objective functions with three
practices and three complementarities, and for a combination of
discrete and continuous practices. There are two main conclusions
to this section. First, the principal weakness of the demand speci-
fication is elevated Type I error rates when it is optimal for more
than half of the sample to choose the maximum level for both
practices. This occurs when the practices have no increasing mar-
ginal costs (or alternatively, no decreasing marginal returns) and
when contingency effects are small. Given how extreme such a
worst case scenario is, we believe this result only marginally
qualifies our main conclusion. In the majority of the management
accounting studies we belief that variation in contingency factors
and/or decreasing marginal returns will dominate over the direct
benefits of the practices. If this is the case, the demand specification
has more power to detect a true complementarity at all but the
lowest level of optimality while keeping Type I error rates at the
nominal 5% level.

The second conclusion of this section is that the demand spec-
ification generally deals well with discrete practices or an objective
function with more than two practices and complementarities.
Thus, our overall conclusion and recommendations generalise to
this expanded objective function. Nevertheless, in this setting the
demand specification suffers from the same inflated Type I error
rate when it is optimal for more than half of the sample to choose
the maximum level for any two practices. Because the decision to
adopt a binary practice is inherently all or nothing, the issue is more
pronounced for a test of complementarity between two discrete
9 A positive bias, i.e., q1q2 >0, increases the probability of reporting a comple-
mentarity effect in the absence of a true effect. The Type I errors that might occur
because of this correlated omitted variable problem are, by construction, identical
to those for q1q2 <0. Using q1q2 <0 in our simulation allows us to capture two
problems at once, i.e., potentially elevated Type I errors and reduced power.
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practices. Similarly as before, when the benefits of the practices
vary enough in the sample due to contingency effects, the demand
specification outperforms the performance specification at all but
the lowest level of optimality.

The technical reason for the main weakness of the demand
specification is that the corner solution of adopting both practices
to their full extent violates the second order optimality condition as
discussed in 2.1. The three subsections that follow explain the
technical details of the simulations and explain how we establish
quantitatively that the worst case scenario is unlikely to occur in a
typical management accounting setting. The first section in-
vestigates an expanded set of parameter combinations to show the
robustness of the baseline results in 4.1.3. Under this simulation,
corner solutions are possible for all four combinations and they are
all equally likely to occur in the sample.10 The second section
changes the first simulation so that one corner solution (i.e. both
practices should be adopted to their full extent) is more likely. The
third simulation introduces a third practice in the objective func-
tion and allows for discrete practices when one corner solution is
more likely.
4.4.1. Robustness
In a first simulation, we vary the following parameters. b12

equals 0 or 0.25. d1 ¼ d2 equal 0, 0.25 or 1. g1 ¼ 0:33 and g2 equals
0, � 0:33, or 0.33. sε1 ¼ sε2 varies between 0.5, 1, and 2 and sn
equals 1 or 2. Note that these parameter combinations no longer
reflect the calibration to a typical management accounting study in
section 3.2. For computational reasons, we restrict ourselves to
comparing the two theoretically derived specifications: the demand
specification and the performance 1 specification.

The results in Table 6 largely confirm that only for lower levels of
optimality the performance 1 specification has more power to
detect a true effect than the demand specification. The major issue
for the performance 1 specification are the inferior Type I error rates
as reported in Panel B. The biggest issue for the demand specifica-
tion is the slightly elevated Type I error rate when there are no
increases in the marginal costs of the practices (di ¼ 0) and the
unobserved heterogeneity is relatively small (sεi ¼ 0:5). This is not
surprising because these are the conditions where the optimal level
for the practices are corner solutions and they violate the second-
order optimality condition underlying the demand specification.
4.4.2. Corner solutions
In the next simulation, we exaggerate the effect of the corner

solutions by setting the main effects of the two practices, b1 and b2
equal to 0.5. This choice favours one of the four corners, namely
where a firm would adopt both practices to their full extent. More
specifically under the worst case scenario, i.e., sε1 ¼ sε2 ¼ 0:5 and
d1 ¼ d2 ¼ 0, 80% of observations should adopt practice 1 and 80%
should adopt practice 2.11 This also implies that 64% of the sample
optimally adopts both practices to their full extent even in the
absence of a complementarity effect. In other words, for almost two
thirds of the sample the question whether the practices are
The distribution of the marginal effect of x1 on performance, vx1 , is given by a

normal distribution with mean b1 and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ε1
þ g2

1

q
. In the worst

case scenario for the demand specification this implies a standard deviation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:25þ 0:11

p
z0:6. The probability that the practice is beneficial for a firm at all

levels of the practice is then given by F
�
b1
0:6

�
¼ F

�
0:5
0:6

�
z0:8 where F is the cu-

mulative standard normal distribution.
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Table 6
Power and Type I error rate without main effects.

demand specification performance specification

sεi di sn 2 4 8 16 32 2 4 8 16 32

Power
0.5 0.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.64 0.14
0.5 0.00 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.76 0.30
0.5 0.25 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.37 0.08
0.5 0.25 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.57 0.29
0.5 1.00 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.56
0.5 1.00 2 0.91 0.99 1.00 1.00 1.00 1.00 1.00 0.91 0.60 0.35
1.0 0.00 1 0.99 1.00 1.00 1.00 1.00 1.00 0.98 0.72 0.13 0.01
1.0 0.00 2 0.97 1.00 1.00 1.00 1.00 1.00 0.97 0.79 0.25 0.04
1.0 0.25 1 0.99 1.00 1.00 1.00 1.00 1.00 0.92 0.33 0.01 0.00
1.0 0.25 2 0.98 1.00 1.00 1.00 1.00 1.00 0.92 0.54 0.10 0.01
1.0 1.00 1 0.85 1.00 1.00 1.00 1.00 1.00 0.98 0.82 0.43 0.17
1.0 1.00 2 0.84 0.99 1.00 1.00 1.00 1.00 0.95 0.70 0.39 0.21
2.0 0.00 1 0.66 0.98 1.00 1.00 1.00 0.73 0.63 0.24 0.02 0.00
2.0 0.00 2 0.64 0.98 1.00 1.00 1.00 0.74 0.64 0.28 0.04 0.00
2.0 0.25 1 0.70 0.99 1.00 1.00 1.00 0.74 0.51 0.08 0.00 0.00
2.0 0.25 2 0.67 0.99 1.00 1.00 1.00 0.74 0.55 0.15 0.01 0.00
2.0 1.00 1 0.58 0.97 1.00 1.00 1.00 0.81 0.59 0.18 0.02 0.00
2.0 1.00 2 0.56 0.96 1.00 1.00 1.00 0.79 0.58 0.20 0.04 0.01
Type I
0.5 0.00 1 0.07 0.10 0.09 0.07 0.06 0.10 0.09 0.07 0.08 0.08
0.5 0.00 2 0.06 0.08 0.07 0.06 0.07 0.09 0.09 0.07 0.06 0.07
0.5 0.25 1 0.06 0.05 0.05 0.05 0.05 0.11 0.08 0.10 0.10 0.11
0.5 0.25 2 0.05 0.07 0.05 0.05 0.05 0.09 0.08 0.06 0.07 0.08
0.5 1.00 1 0.03 0.04 0.04 0.04 0.03 0.14 0.13 0.13 0.10 0.09
0.5 1.00 2 0.04 0.04 0.04 0.04 0.04 0.09 0.09 0.08 0.06 0.05
1.0 0.00 1 0.05 0.05 0.04 0.05 0.05 0.10 0.10 0.08 0.07 0.07
1.0 0.00 2 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.09 0.09 0.07
1.0 0.25 1 0.06 0.05 0.06 0.05 0.05 0.11 0.12 0.11 0.11 0.12
1.0 0.25 2 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.11 0.09 0.10
1.0 1.00 1 0.05 0.04 0.04 0.05 0.04 0.14 0.16 0.16 0.16 0.15
1.0 1.00 2 0.05 0.04 0.04 0.04 0.04 0.14 0.12 0.13 0.11 0.10
2.0 0.00 1 0.05 0.06 0.04 0.05 0.04 0.11 0.11 0.09 0.08 0.07
2.0 0.00 2 0.05 0.05 0.04 0.04 0.04 0.11 0.11 0.10 0.08 0.08
2.0 0.25 1 0.05 0.05 0.04 0.04 0.04 0.12 0.12 0.12 0.10 0.10
2.0 0.25 2 0.05 0.05 0.04 0.04 0.05 0.12 0.11 0.10 0.10 0.09
2.0 1.00 1 0.04 0.05 0.05 0.06 0.05 0.14 0.14 0.17 0.17 0.20
2.0 1.00 2 0.06 0.05 0.05 0.05 0.05 0.13 0.15 0.14 0.16 0.14

Note.
Power and Type I error rate for the different levels of optimality (2, 4, 8, 16, 32) when b1 ¼ b2 ¼ 0 for the demand and performance 1 specification. The effect of the envi-
ronmental variable, z, on the second choice is either negative (g1 ¼ :33 and g2 ¼ � :33) or positive (g1 ¼ 0:33 and g2 ¼ 0:33). The results are averaged over the values of g2.
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complements is irrelevant.
The results in Table 7 show that the introduction of the main

effects does not affect the power of the demand specification
relative to the performance specification. Table 7 shows that the
Type I error rate of the demand specification breaks down under
the worst case scenario with one corner solution outlined above.
Increases in unobserved variation in performances (sεi ) and mar-
ginal costs (di) largely mitigate the problem.

4.4.3. Two discrete practices and one continuous practice
Given that corner solutions violate the assumption of the de-

mand specification, we run a last simulation to test the robustness
of the demand specification. We extend the objective function to
three practices where the first and the third practice are discrete
practices. Table 8 reports the power of both specifications to detect
a true substitution effect between the first and the second practice
(b12 ¼ � 0:25) and a true complementarity between the first and
the third practice (b13 ¼ 0:25). Table 8 further reports the resulting
Type I error rates in the absence of these effects. In both panels
there is a complementarity between the second and the third
practice (b23 ¼ 0:25). b12 represents a complementarity between a
continuous and a discrete practice. b13 represents a complemen-
tarity between two discrete practices. The full objective function
with x1 and x3 as binary practices is reproduced below.
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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2 þ n

The parameters are the same as in the previous simulation with
two exceptions. First, we need to set the parameters for the direct
effect (b3 ¼ 0:5) and the contingency effects for the third practice
(sε3 ¼ sε1 ¼ sε2 , g3 ¼ 0:33). Second, only the continuous, second
practice can have increasing marginal costs.

The results in Table 8 are consistent with Table 7. The relative
advantage of the demand specification to detect a true effect has
not changed. The Type I error rates again show that the demand
specification does not adequately control the false positive rate
when there is low unobserved heterogeneity (sεi ¼ 0:5). When
almost two thirds of the sample optimally adopts two practices (to
their full extent) in the absence of an interdependency between
these practices, the demand specification should not be trusted.
Untabulated results show that the problem is less pronounced
when there is more unobserved heterogeneity in performance
(sn ¼ 2 or sn ¼ 4). For the interdependency with only one discrete
practice, the problem for the demand specification dissipates when
marginal costs of the continuous practice increase (d2 ¼ 1).
entarities between accounting practices, Accounting, Organizations



Table 7
Power and Type I error rate with main effects.

demand specification performance specification

sεi di sn 2 4 8 16 32 2 4 8 16 32

Power
0.5 0.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.17
0.5 0.00 2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.28
0.5 0.25 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.31 0.04
0.5 0.25 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.54 0.18
0.5 1.00 1 0.89 0.99 1.00 1.00 1.00 1.00 1.00 0.99 0.85 0.51
0.5 1.00 2 0.87 0.99 1.00 1.00 1.00 1.00 1.00 0.91 0.57 0.33
1.0 0.00 1 0.96 1.00 1.00 1.00 1.00 1.00 0.99 0.80 0.15 0.01
1.0 0.00 2 0.92 1.00 1.00 1.00 1.00 1.00 0.98 0.83 0.26 0.04
1.0 0.25 1 0.97 1.00 1.00 1.00 1.00 1.00 0.95 0.29 0.01 0.00
1.0 0.25 2 0.94 1.00 1.00 1.00 1.00 1.00 0.94 0.54 0.08 0.01
1.0 1.00 1 0.80 0.99 1.00 1.00 1.00 1.00 0.98 0.79 0.40 0.15
1.0 1.00 2 0.78 0.99 1.00 1.00 1.00 1.00 0.95 0.68 0.35 0.18
2.0 0.00 1 0.60 0.97 1.00 1.00 1.00 0.76 0.68 0.24 0.02 0.00
2.0 0.00 2 0.57 0.96 1.00 1.00 1.00 0.75 0.67 0.30 0.04 0.01
2.0 0.25 1 0.62 0.99 1.00 1.00 1.00 0.75 0.50 0.08 0.00 0.00
2.0 0.25 2 0.61 0.98 1.00 1.00 1.00 0.74 0.55 0.13 0.01 0.00
2.0 1.00 1 0.54 0.96 1.00 1.00 1.00 0.81 0.60 0.17 0.01 0.00
2.0 1.00 2 0.53 0.94 1.00 1.00 1.00 0.79 0.58 0.19 0.03 0.01
Type I
0.5 0.00 1 0.17 0.37 0.36 0.23 0.14 0.12 0.08 0.05 0.03 0.04
0.5 0.00 2 0.11 0.24 0.23 0.19 0.13 0.09 0.07 0.05 0.05 0.04
0.5 0.25 1 0.07 0.11 0.08 0.06 0.05 0.14 0.10 0.07 0.07 0.07
0.5 0.25 2 0.07 0.08 0.07 0.06 0.05 0.08 0.07 0.06 0.05 0.05
0.5 1.00 1 0.04 0.04 0.05 0.04 0.04 0.14 0.13 0.12 0.10 0.08
0.5 1.00 2 0.04 0.03 0.04 0.04 0.04 0.10 0.08 0.08 0.06 0.06
1.0 0.00 1 0.08 0.10 0.09 0.08 0.07 0.12 0.09 0.06 0.05 0.05
1.0 0.00 2 0.07 0.09 0.09 0.08 0.06 0.10 0.09 0.08 0.06 0.05
1.0 0.25 1 0.06 0.08 0.08 0.06 0.05 0.12 0.11 0.09 0.09 0.08
1.0 0.25 2 0.06 0.08 0.06 0.06 0.05 0.11 0.10 0.09 0.08 0.08
1.0 1.00 1 0.04 0.04 0.04 0.05 0.04 0.15 0.15 0.15 0.14 0.13
1.0 1.00 2 0.04 0.04 0.04 0.05 0.04 0.13 0.12 0.12 0.10 0.09
2.0 0.00 1 0.05 0.05 0.05 0.04 0.05 0.12 0.11 0.08 0.07 0.06
2.0 0.00 2 0.05 0.06 0.05 0.05 0.04 0.12 0.10 0.09 0.08 0.07
2.0 0.25 1 0.05 0.06 0.05 0.05 0.04 0.12 0.11 0.10 0.08 0.08
2.0 0.25 2 0.05 0.05 0.04 0.05 0.04 0.12 0.11 0.11 0.10 0.08
2.0 1.00 1 0.05 0.04 0.06 0.05 0.05 0.13 0.16 0.17 0.16 0.18
2.0 1.00 2 0.05 0.06 0.05 0.04 0.05 0.12 0.13 0.15 0.14 0.15

Note.
Power and Type I error rate for the different levels of optimality (2, 4, 8, 16, 32) when b1 ¼ b2 ¼ 0:5 for the demand and performance 1 specification. The effect of the
environmental variable, z, on the second choice is either negative (g1 ¼ :33 and g2 ¼ � :33) or positive (g1 ¼ 0:33 and g2 ¼ 0:33). The results are averaged over the values of
g2.
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The results largely confirm the superiority of the demand
specification for a typical management accounting study with one
more caveat. When the two practices are discrete and should be
adopted together in the absence of any interdependencies by the
majority of the sample (sεi ¼ 0:5), the demand specification does
not adequately control the Type I error rate. We argue that this is an
uncommon occurrence formostmanagement accounting practices.
4.5. Contingent complementarity

In this section we extend the baseline model by allowing for a
contingency effect on the complementarity. That is, we assume that
not only the main effect of the practices depends on the environ-
mental factor, z, but also the complementarity itself. The simplified
objective function for the simulations is then as follows, where the
parameter g12 governs how the complementarity depends on the
environmental factor:

y¼ð0:33zþ ε1Þx1 þðg2zþ ε2Þx2 þðb12 þg12zÞx1x2 �
1
2
x21 �

1
2
x22

þ n

(6)
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Themanagement accounting literature has shown great interest
in investigating whether the strength of complementarity effects
varies by environmental factors. For instance Grabner (2014) re-
ports that subjective performance evaluation and performance
based pay are complements for creativity dependent firms but not
for other firms. Some researchers test for contingent complemen-
tarity effects by splitting the sample into observations with high
and low values for the environmental factor and running separate
regressions for both samples using either the performance speci-
fication or the demand specification. For instance, they expect a
significant complementarity in one sample and no significant
complementarity in the other sample. Our results and conclusions
so far about the power and Type I error respectively directly apply
to this approach, where these issues can now also affect the com-
parison between the subsamples. For example, the approach might
miss a true effect in one subsample if the power of the specification
is low, or alternatively it might erroneously report an effect when
the Type I error rate of the specification is elevated.

Others try to estimate the parameter g12 more directly. In this
approach, the demand specification and performance specification
include an additional term to capture the contingent complemen-
tarity: respectively gd

12x2z and gp12x1x2z. The full demand, perfor-
mance 1, and performance 2 specification are given below. We do
entarities between accounting practices, Accounting, Organizations



Table 8
Power and Type I error rate with main effects and discrete practices.

demand specification performance specification

sεi d2 sn 2 4 8 16 32 2 4 8 16 32

1 Discrete Practice - Power
0.5 0.00 1 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
0.5 0.25 1 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
0.5 1.00 1 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
1.0 0.00 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.77
1.0 0.25 1 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.68
1.0 1.00 1 0.86 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.89 0.76
2.0 0.00 1 0.50 0.93 1.00 1.00 1.00 0.74 0.79 0.66 0.39 0.18
2.0 0.25 1 0.54 0.96 1.00 1.00 1.00 0.73 0.75 0.60 0.30 0.15
2.0 1.00 1 0.51 0.93 1.00 1.00 1.00 0.72 0.70 0.54 0.35 0.18
1 Discrete Practice - Type I
0.5 0.00 1 0.09 0.20 0.27 0.28 0.18 0.10 0.08 0.06 0.04 0.03
0.5 0.25 1 0.08 0.15 0.19 0.19 0.14 0.10 0.08 0.06 0.05 0.04
0.5 1.00 1 0.05 0.06 0.06 0.04 0.04 0.12 0.10 0.07 0.06 0.07
1.0 0.00 1 0.05 0.07 0.08 0.09 0.08 0.10 0.08 0.07 0.04 0.05
1.0 0.25 1 0.07 0.06 0.06 0.07 0.07 0.09 0.07 0.06 0.05 0.05
1.0 1.00 1 0.05 0.06 0.06 0.05 0.04 0.08 0.09 0.07 0.06 0.05
2.0 0.00 1 0.06 0.04 0.04 0.04 0.06 0.09 0.08 0.08 0.06 0.06
2.0 0.25 1 0.06 0.07 0.05 0.05 0.06 0.07 0.09 0.07 0.05 0.05
2.0 1.00 1 0.04 0.06 0.05 0.05 0.05 0.08 0.09 0.08 0.07 0.06
2 Discrete Practices - Power
0.5 0.00 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.25 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 0.00 1 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91
1.0 0.25 1 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92
1.0 1.00 1 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
2.0 0.00 1 0.61 0.98 1.00 1.00 1.00 0.79 0.88 0.84 0.60 0.35
2.0 0.25 1 0.58 0.98 1.00 1.00 1.00 0.84 0.90 0.85 0.61 0.30
2.0 1.00 1 0.51 0.97 1.00 1.00 1.00 0.85 0.91 0.91 0.76 0.46
2 Discrete Practices - Type I
0.5 0.00 1 0.14 0.21 0.24 0.13 0.08 0.11 0.08 0.06 0.04 0.06
0.5 0.25 1 0.13 0.27 0.29 0.17 0.11 0.09 0.08 0.07 0.06 0.04
0.5 1.00 1 0.08 0.22 0.32 0.33 0.26 0.11 0.13 0.10 0.06 0.06
1.0 0.00 1 0.08 0.09 0.06 0.07 0.07 0.09 0.08 0.08 0.05 0.05
1.0 0.25 1 0.06 0.09 0.09 0.08 0.07 0.12 0.10 0.08 0.06 0.04
1.0 1.00 1 0.05 0.10 0.11 0.10 0.08 0.09 0.09 0.10 0.07 0.05
2.0 0.00 1 0.06 0.05 0.05 0.06 0.06 0.09 0.09 0.07 0.07 0.06
2.0 0.25 1 0.04 0.05 0.05 0.05 0.06 0.11 0.08 0.07 0.07 0.05
2.0 1.00 1 0.06 0.06 0.05 0.05 0.05 0.10 0.10 0.08 0.06 0.06

Note.
Power and Type I error rate for the different levels of optimality (2, 4, 8, 16, 32) when b1 ¼ b2 ¼ 0:5 for the demand and performance 1 specification. Power refers to the
proportion of samples with a significantly negative estimate for the interdependency between a discrete and a continuous practice (b12 ¼ � 0:25) and a significantly positive
estimate for the interdependency between two discrete practices (b13 ¼ 0:25). Type I refers to the proportion of samples with a significant estimate for the complementarity
when b12 ¼ b13 ¼ 0. b1, b2, and b3 equal 0.5. Because two of the practices are discrete d1 ¼ d3 ¼ 0.

Table 9
Power and Type I error rate for contingent complementarity.

Level of Optimality

specification b12 2 4 8 16 32

Power
demand 0.00 0.94 1.00 1.00 1.00 1.00
demand 0.25 0.92 1.00 1.00 1.00 1.00
performance 1 0.00 1.00 1.00 0.99 0.81 0.37
performance 1 0.25 1.00 1.00 0.99 0.82 0.48
performance 2 0.00 0.72 0.54 0.82 0.97 0.99
performance 2 0.25 0.80 0.67 0.87 0.94 0.94
Type I
demand 0.00 0.05 0.05 0.05 0.04 0.05
demand 0.25 0.05 0.03 0.05 0.04 0.04
performance 1 0.00 0.15 0.17 0.18 0.16 0.15
performance 1 0.25 0.15 0.17 0.17 0.18 0.17
performance 2 0.00 0.19 0.19 0.19 0.17 0.17
performance 2 0.25 0.19 0.18 0.17 0.17 0.19

Note.
Power is the proportion of samples reporting a significantly negative (when g12 ¼ � 0:33) or a significantly positive (when g12 ¼ 0:33) contingent complementarity. Type I is
the proportion of samples reporting a significant contingent complementarity when g12 ¼ 0. The remaining parameters are the same as in the baseline simulation in Fig. 3.
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Table 10
Power and Type I error rate with bootstrap.

g2 Level of Optimality

specification 2 8 32

Power
performance 1 �0.33 0.99 0.68 0.09
performance 1 0.33 0.99 0.65 0.08
Type I
performance 1 �0.33 0.06 0.07 0.06
performance 1 0.33 0.05 0.07 0.06

Note.
Type I error rates and power for the performance 1 specification at different levels of
optimality: 2, 8, 32. g2 is set at either �0:33 and 0.33. The other parameters are the
same as in Fig. 3.
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not report the performance 3 specification because it is unlikely that
a researcher would exclude x1z or x2z from the regression model
when estimating the coefficient of x1x2z.

x1 ¼ bd0 þ bd12x2 þ gd12x2zþ gd1zþ ε
d

y¼ bp10 þ
�
bp11 þgp11 z

�
x1 þ

�
bp12 þg2z

�
x2 þ

�
bp112 þgp112z

�
x1x2

þ dp11 x21 þ dp12 x22 þap1zþ np1

y¼ bp20 þ
�
bp21 þgp21 z

�
x1 þ

�
bp22 þg2z

�
x2 þ

�
bp212 þgp212z

�
x1x2

þap2zþ np2

Table 9 reports the results of a simulation to evaluate this
approach similar to the baseline simulation. In the simulation, we
vary the level of optimality O (2;4;8;16;32), the complementarity,
independent of the environmental factor, b12 (0 or 0.25), the direct
contingency effects, g1 (0.33) and g2 (�0:33 or 0.33), and the
contingency effect on the complementarity, g12. Table 9 shows the
power to detect a contingent complementarity (g12 ¼ 0:33 or �
0:33) and the Type I error rate in the absence of a contingent
complementarity (g12 ¼ 0).

The results show that demand specification also outperforms
the performance specifications to test for a contingent comple-
mentarity at all but the lowest levels of optimality. As before, the
demand specification has similar or more power to detect a true
effect while maintaining better control over Type I error rates at all
levels of optimality.

5. Going forward

In this section, we use the above results to provide guidance for
future studies on interdependencies between management control
practices. First, we explain why it will almost always be better to
rely on the demand specification in a research setting without a
natural experiment, and why researchers should report the results
of the demand specification in addition to the results of the per-
formance specification. Second, we explain how researchers can
appropriately control for contingency effects in the performance
specifications. Third, we show how the bootstrap and corrections to
standard error and degrees of freedom calculations can dramati-
cally improve the Type I error rates of the performance specifica-
tion. Fourth, we show how researchers can combine the results of
the demand and performance specification if only one of them
reports a significant interdependency.

5.1. Reporting the demand specification

Our recommendation applies to studies that test for comple-
mentarity (or substitution) with cross-sectional data where it is
unlikely that firms have almost randomly chosen the accounting
system. We recommend to always report the demand specification
as it will have higher power to detect the complementarity while
maintaining appropriate Type I error rates. This recommendation
does not put any extra burden on the researcher with respect to
data collection because the demand specification does not require
additional data compared to the correctly specified performance
specification.

A researcher might be interested in using the performance
specification because they are interested in outcomes that are not
the ultimate objective of the firm. For instance, researchers who are
interested in which accounting system causes stress in employees
(Shields et al., 2000) can use the performance specification to
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
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investigate this research question. The success of this approach
hinges onwhether the intermediate outcome (e.g. stress) is related
to the final objective (e.g. job performance). If the intermediate
outcome and the final objective are strongly correlated, the inter-
mediate outcome will behave as a noisy measure of the final
objective. In that case, the additional noise will be subsumed in the
residual term. As we showed in Fig. 4 the additional noise hampers
the performance specification more than the demand specification.
In other words, if the intermediate outcome is strongly related to
the final outcome, all the problems with the performance specifi-
cations will emerge and the demand specification will be superior
to detect an interdependency.
5.2. Controlling for contingency factors

One advantage of the performance specification is that it can
estimate directly the size of the complementarity in terms of a
performance increase. In order to report this estimate, a researcher
should estimate the performance specificationwith the inclusion of
all interactions between the accounting practices, such as delega-
tion and incentives, as well as contingency factors that affect the
performance of the practices, such as environmental uncertainty.

Bedford et al. (2016) provide an example of how to control for
environmental dynamism in a complementarity test with the
performance specification. For instance, their Table 6 reports the
test for the complementarity effect of interactive control and firm
structure on management control effectiveness, as well as controls
for the interaction between environmental dynamism and inter-
active control and between environmental dynamism and firm
structure.

When there are a large number of contingency factors that need
to be included, the performance specification has to include a large
number of interactions which can yield unstable estimates. We
recommend that researchers use a dimension reduction technique
such as principal component analysis on the contingency factors to
reduce the number of variables and interactions in the regression.
This recommendation assumes that researchers are mainly inter-
ested in estimating the complementarity and only include the
contingency factors as control variables.
5.3. Correcting type I errors

Further, we address the Type I error rates of the performance
specification. Even after adjusting for contingency factors, our re-
sults show that the performance specification consistently reports
a higher proportion of Type I errors than the nominal false positive
rate of 5%. We propose two solutions to this problem. The first
solution is the bootstrap approach, which relies on repeated
resampling of the data to empirically estimate the true distribution
entarities between accounting practices, Accounting, Organizations



Table 11
Power and Type I error rate with nearly exact correction.

specification
Level of Optimality

2 4 8 16 32 64

Power
demand 0.85 1.00 1.00 1.00 1.00 1.00
demand corrected 0.86 1.00 1.00 1.00 1.00 1.00
performance 1 1.00 0.98 0.83 0.45 0.16 0.07
performance 1 corrected 0.99 0.93 0.66 0.29 0.09 0.03
combined 1.00 1.00 1.00 1.00 1.00 1.00
combined corrected 1.00 1.00 1.00 1.00 1.00 1.00
Type I
demand 0.04 0.04 0.05 0.05 0.05 0.05
demand corrected 0.05 0.05 0.05 0.05 0.05 0.05
performance 1 0.16 0.16 0.15 0.16 0.14 0.14
performance 1 corrected 0.06 0.06 0.06 0.06 0.06 0.06
combined 0.20 0.20 0.20 0.20 0.18 0.18
combined corrected 0.11 0.10 0.10 0.11 0.10 0.11

Note.
Type I error rates and power for the demand and performance function specification
at different levels optimality: 2, 4, 8, 16, 32, 64. The parameters are the same as in
the main analysis in the Figure refmain.

12 The corrected standard errors are 2:8% (O ¼ 2) to 1% (O ¼ 64) smaller for the
demand specification and 34% (O ¼ 2) to 25% (O ¼ 64) higher for the performance
specification. The corrected degrees of freedom are 53% (O ¼ 2) to 64% (O ¼ 64)
smaller for the demand specification and 77% (O ¼ 2) to 85% (O ¼ 64) for the
performance specification. The correction of the standard errors have the largest
impact on the improvement of the performance specification error rate. In practice,
the degree of freedom correction could be as beneficial in smaller samples.
13 http://personal.lse.ac.uk/YoungA/and https://github.com/stijnmasschelein/
complementarity-simulation/blob/master/R/nearly_exact_correction.R.
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of the interdependency parameter (Efron & Hastie, 2017). The
second solution relies on adjustments to the estimates of the
standard error and degrees of freedom that are used to calculate the
t-statistic and p-value of the interdependency estimate (Young,
2016).

The bootstrap approach requires to run the performance spec-
ification repeatedly after resampling the data with replacement.
The assumption of the bootstrap approach is that the data in the
sample are representative of the broader population and that
resampling from this sample approximates the variation in the
population. To show the impact of bootstrapping, we run for each
resampled dataset the performance specification, keep the esti-

mate bp312 , and use the distribution of these estimates to decide
whether the complementarity is statistically significant. If the 95%
bias-corrected and accelerated confidence interval does not include
0, the complementarity is considered significant (Efron & Hastie,
2017). We use the recommended 2000 repetitions to get accurate
estimates of the confidence interval (Efron & Hastie, 2017).

We test the Type I error rate and the power of the bootstrap
approach for the performance 1 specification on a subset of the
parameters of the main analysis. The computational burden of the
bootstrap approach forces us to limit the parameter space. Specif-
ically, we limit the effect of the contingency factor z on x2 to two
values (g2 ¼ 0:33 and g2 ¼ � 0:33) and we limit the values of the
level of optimality to three values (O ¼ 2, O ¼ 8, and O ¼ 32). The
results in Table 10 show that the bootstrap approach reduces the
Type I error rates of the performance specification considerably,
close to the nominal 5%. Unfortunately, the improvement in error
rates comes at the cost of reduced power to detect a true
complementarity.

Young (2016) proposes a computationally efficient alternative
adjustment. The adjustment uses the result that the square of the
standard error of a coefficient estimate is chi-squared distributed
when the residuals of the regression are normally distributed.
Young (2016) proposes an adjustment to the standard errors to
allow deviations from normality and account for the possibility of
influential outliers. In addition, he proposes a further adjustment to
the degrees of freedom of the chi-squared distribution and thus of
the t-statistic of the coefficient, to account for the fact that the data
do not contain completely independent observations. Recall that
one of the problems for the performance specification is that
optimally designed accounting systems are completely determined
by the contingency factors and thus firms in the same environment
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have the same optimal accounting system. In other words, firms in
the same environment are not independent from each other. As a
result, the adjustments to the standard errors and degrees of
freedom are appropriate to improve the performance specification.

We rerun the main analysis for the demand and performance 1
specification. Table 11 reports the Type I error rate and power of
both specifications with and without the corrections. For ease of
exposition, we have aggregated the simulations over the different
values of g2. The results show that the corrections almost bring the
Type I error rates of the performance 1 specification to the nominal
level of 5%. As with the bootstrap results, this comes at the cost of a
decrease in the power to detect a true complementarity.12

Because the power and Type I error rate of the bootstrap
approach and the Young (2016) corrections are indistinguishable,
researchers can report results on the performance specification
adjusting the OLS results with either of those methods. The boot-
strap approach has the advantage that it is more flexible and
applicable to other functional forms and multiple equation models.
Most modern statistical packages have the functionality to run
bootstrap tests. The corrections to the standard error and degrees of
freedom are generally faster but limited to linear models. STATA
users can use the script on Alwyn Young’s website, while R users
can use the functions on the Github page of this paper.13

5.4. Combining performance and demand specification

Because the power of the performance specification decreases
with the level of optimality while the power of the demand spec-
ification increases, a researcher might be tempted to run both re-
gressions and decide that a complementarity is real if either of the
regressions reports a significant effect. We assess this combined
strategy in Table 11. The results show that independent of the level
of optimality, the combined approach with and without the
correction leads to inflated Type I error rates. Further investigation
of the results shows that for a given sample the probability of a false
positive in the demand specification is independent of the proba-
bility of a false positive in the performance specification. Therefore,
we recommend that researchers use a significance level of 2:5% for
each test to keep the Type I error rate at 5% when combining the
demand specification and the performance specification. Untabu-
lated results show that this strategy contains the overall Type I
error rate to the nominal 5%.

6. Summary and discussion

This study builds on earlier studies on complementarity theory
(Grabner & Moers, 2013; Milgrom & Roberts, 1995), to provide
guidance on how to test for the presence of interdependencies in
management control systems. The results of the simulation study
show that in most common scenarios the assumptions of opti-
mality should not be the main driver in deciding between the de-
mand or the performance specification. In fact, unless researchers
can make the case that a large number of firms have a management
control systemwhere the relation between practices is the opposite
of the optimal relation or that contingency effects are small, the
entarities between accounting practices, Accounting, Organizations
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demand specification should be the preferred specification. A
straight-forward check on the optimality assumption is to investi-
gate the correlation between the practices and the environmental
variables. Non-trivial levels of optimality in the sample will induce
correlations between management accounting practices and envi-
ronmental factors when there are contingency effects.14

When performance data is available, the performance specifi-
cation can be estimated as an additional test in combination with
the demand specification. The performance specification can be
expected to yield acceptable estimates when there is considerable
variation between firms in the same environment. However, the
results of this study show the importance of adequately controlling
for contingency factors and adjusting the estimates of standard
errors. As far as we know, the current accounting literature does not
fully address these problems which lead to substantial increases in
Type I error rates and a loss of power.

The most important weakness of the demand specification is
that it assumes that the performance benefits of management
control practices are decreasing with more extensive use. If this
second-order condition does not hold, the demand specification
might have elevated levels of false positives. We suggest that re-
searchers verify the distribution of the management practices to
check whether the second-order condition holds. If one of the
management practices has more observations at the extremes of
the measurement scale than at the centre, the second order con-
ditionmight be violated and the results of both the demand and the
performance specification should be interpreted with some
caution. A conservative approach is to treat the practices as binary
choices.

This study has several limitations. The recommended approach,
the demand specification, does not allow to estimate the perfor-
mance effect of the interdependency directly. More sophisticated
models are needed to reliably estimate this performance effect. The
economics literature has proposed and used a multiple equation
model that combines both demand and performance functions
(Athey & Stern, 1998; Gentzkow, 2007; Kretschmer et al., 2012;
Miravete & Pernias, 2006). Further research can investigate the
properties of these statistical models for the management control
setting. An additional advantage of the models is that they can
incorporate the effect of unobserved contingency factors and un-
observed interdependent practices. A more detailed discussion of
these issues goes beyond the scope of this study.

Another limitation of the current study is that the level of
optimality is implemented with a naive algorithm that lacks
external validity. Better theoretical models of how firms choose
management accounting practices can improve upon our under-
standing of the distribution of management accounting practices
and their interdependencies. The approach of Hemmer and Labro
(2019) is one potential avenue to explore further. They model the
firm’s choices as decisions under incomplete information with
Bayesian updating when more information becomes available. In
these models, firms can end up with ex-post sub-optimal man-
agement control systems because they lack the appropriate infor-
mation to choose the optimal system. The parameter governing the
lack of information can replace our optimality parameter, O. Further
innovations in these models can allow researchers to estimate
directly the extent to which firms lack information and choose sub-
14 The absence of any correlations does not imply the absence of high levels of
optimality, as multiple contingency effects can cancel each other out. Another
clarification about the superiority of the demand specification is that it does not
imply that the demand specification provides evidence for high levels of optimality.
A statistically significant interdependency effect in the demand specification only
implies that firms on average avoid the worst possible management control sys-
tems, not that they have on average the optimal control system.
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optimal management control practices.
Appendix A. Omitted Variable Bias

The expected bias of omitting the term x1z on the estimate of bp312

in the performance 3 specification is given by g1
covðfx1x2;fx1zÞ
varðfx1x2Þ (Chenhall

& Moers, 2007) where gx1x2 and fx1z are the residual vectors of
regressing x1, x2, and z on x1z and x1z respectively (Angrist &
Pischke, 2008; Cunningham, 2018). Assume that x1, x2, and z are
multivariate standard normal with correlations r12, r2z, and r1z. We
can use the Isserlis (1918) theorem to derive the covariance be-
tween an interaction and one of the variables. Specifically,Wemake
use of the fact that the expectation of the product of an odd number
of standard normal variables equals 0. In the simplest case, Eðx1Þ ¼
Eðx2Þ ¼ EðzÞ ¼ 0.

covðx1x2; x1Þ¼ E
�
x21x2

�
� Eðx1x2ÞEðx1Þ

¼ 0� 0

covðx1x2; x2Þ¼0

covðx1x2; zÞ¼0

covðx1z; x1Þ¼0

covðx1z; x2Þ¼0

covðx1z; zÞ¼0

Given that the covariance between any product of two variables
and a single variable is 0, the expectation of the residual terms gx1x2
and fx1z equal x1x2 and x1z respectively.

covð gx1x2; fx1zÞ
varð gx1x2Þ ¼ covðx1x2; x1zÞ

varðx1x2Þ

where,

covðx1x2;x1zÞ¼E
�
x21x2z

�
�Eðx1x2ÞEðx1zÞ

¼ E
�
x21
�
Eðx2zÞþEðx1x2ÞEðx1zÞþEðx1zÞEðx1x2Þ�Eðx1x2ÞEðx1zÞ

¼ E
�
x21
�
Eðx2zÞþEðx1x2ÞEðx1zÞ

¼ r2zþr12r1z

In the second line, we use the Isserlis (1918) theorem for the
product of an even number of multivariate standard normal vari-
ables. In the last line wemake use of the fact that E (x21Þ ¼ 1, and the
fact that the correlation of two multivariate standard normal dis-
tributions equals the expected value of their dot product. Similarly,
we can derive the variance of x1x2.

varðx1x2Þ¼ E
�
x21x

2
2

�
� Eðx1x2ÞEðx1x2Þ

¼ E
�
x21
�
E
�
x22
�
þ Eðx1x2ÞEðx1x2Þþ Eðx1x2ÞEðx1x2Þ
� Eðx1x2ÞEðx1x2Þ

¼ 1þ r212

Putting this all together, the bias of omitting the term x1z on the

estimate of bp312 is. g1
r2zþr12r1z
1þr212
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Similarly, the bias of omitting the term x1z on the estimate of bp312
is. g2

r1zþr12r2z
1þr212

The bias of omitting the terms x21 and x22 is d1r12
1þr212

and d2r12
1þr212

respectively.

References

Abernethy, M. A., Dekker, H. C., & Schulz, A. K.-D. (2015). Are employee selection
and incentive contracts complements or substitutes? Journal of Accounting
Research, 53, 633e668. https://doi.org/10.1111/1475-679X.12090.

Angrist, J. D., & Pischke, J.-S. (2008). Mostly harmless econometrics: An empiricist’s
companion. Princeton University Press.

Aral, S., Brynjolfsson, E., & Wu, L. (2012). Three-way complementarities: Perfor-
mance pay, human resource analytics, and information technology. Manage-
ment Science, 58, 913e931. https://doi.org/10.1287/mnsc.1110.1460.

Arora, A. (1996). Testing for complementarities in reduced-form regressions: A
note. Economics Letters, 50, 51e55. https://doi.org/10.1016/0165-1765(95)
00707-5.

Athey, S., & Stern, S. (1998). An empirical framework for testing theories about
complementarity in organizational design. URL https://www.nber.org/papers/
w6600 - NBER Working Paper Series.

Bedford, D. S., Bisbe, J., & Sweeney, B. (2019). Performance measurement systems as
generators of cognitive conflict in ambidextrous firms. Accounting, Organiza-
tions and Society, 72, 21e37. https://doi.org/10.1016/j.aos.2018.05.010.

Bedford, D. S., & Malmi, T. (2015). Configurations of control: An exploratory analysis.
Management Accounting Research, 27, 2e26. https://doi.org/10.1016/
j.mar.2015.04.002.

Bedford, D. S., Malmi, T., & Sandelin, M. (2016). Management control effectiveness
and strategy: An empirical analysis of packages and systems. Accounting, Or-
ganizations and Society, 51, 12e28. https://doi.org/10.1016/j.aos.2016.04.002.

Bouwens, J., & Van Lent, L. (2007). Assessing the performance of business unit
managers. Journal of Accounting Research, 45, 667e697. https://doi.org/10.1111/
j.1475-679X.2007.00251.x.

Brynjolfsson, E., & Milgrom, P. (2013). Complementarity in organizations. In
R. Gibbons, & J. Roberts (Eds.), The handbook of organizational economics.
Princeton: Princeton University Press. https://doi.org/10.1515/9781400845354-
003.

Carree, M., Lokshin, B., & Belderbos, R. (2011). A note on testing for complemen-
tarity and substitutability in the case of multiple practices. Journal of Produc-
tivity Analysis, 35, 263e269. https://doi.org/10.1007/s11123-010-0189-8.

Cassiman, B., & Veugelers, R. (2006). In search of complementarity in innovation
strategy: Internal R&D and external knowledge acquisition. Management Sci-
ence, 52, 68e82. https://doi.org/10.1287/mnsc.1050.0470.

Chenhall, R. H. (2003). Management control systems design within its organiza-
tional context: Findings from contingency-based research and directions for the
future. Accounting, Organizations and Society, 28, 127e168. https://doi.org/
10.1016/S0361-3682(01)00027-7.

Chenhall, R. H., & Moers, F. (2007). The issue of endogeneity within theory-based,
quantitative management accounting research. European Accounting Review,
16, 173e196. https://doi.org/10.1080/09638180701265937.

Cunningham, S. (2018). Causal inference: The mixtape. URL http://scunning.com/
mixtape.html.

Dekker, H. C., Ding, R., & Groot, T. (2016). Collaborative performance management in
interfirm relationships. Journal of Management Accounting Research, 28, 25e48.
https://doi.org/10.2308/jmar-51492.

Efron, B., & Hastie, T. (2017). Computer age statistical inference. URL https://web.
stanford.edu/~hastie/CASI_files/PDF/casi.pdf.

Gentzkow, M. (2007). Valuing new goods in a model with complementarity: Online
newspapers. The American Economic Review, 97, 713e744. https://doi.org/
10.1257/aer.97.3.713.

Grabner, I. (2014). Incentive system design in creativity-dependent firms. The
Please cite this article as: Masschelein, S., & Moers, F., Testing for complem
and Society, https://doi.org/10.1016/j.aos.2020.101127
Accounting Review, 89, 1729e1750. https://doi.org/10.2308/accr-50756.
Grabner, I., & Moers, F. (2013). Management control as a system or a package?

Conceptual and empirical issues. Accounting, Organizations and Society, 38,
407e419. https://doi.org/10.1016/j.aos.2013.09.002.

Grabner, I., & Speckbacher, G. (2016). The cost of creativity: A control perspective.
Accounting, Organizations and Society, 48, 31e42. https://doi.org/10.1016/
j.aos.2015.11.001.

Heinicke, A., Guenther, T. W., & Widener, S. K. (2016). An examination of the rela-
tionship between the extent of a flexible culture and the levers of control
system: The key role of beliefs control. Management Accounting Research, 33,
25e41. https://doi.org/10.1016/j.mar.2016.03.005.

Hemmer, T., & Labro, E. (2019). Management by the numbers: A formal approach to
deriving informational and distributional properties of "unmanaged" earnings.
Journal of Accounting Research, 57, 5e51. https://doi.org/10.1111/1475-
679X.12249.

Hofmann, C., & van Lent, L. (2017). Organizational design and control choices. In
M. A. Hitt (Ed.), The oxford handbook of strategy implementation.

Indjejikian, R. J., & Matejka, M. (2012). Accounting decentralization and perfor-
mance evaluation of business unit managers. The Accounting Review, 87,
261e290. https://doi.org/10.2308/accr-10168.

Isserlis, L. (1918). On a formula of the product moment coefficient of any order of a
normal frequency distribution in any number of variables. Biometrika, 12,
134e139. https://doi.org/10.1093/biomet/12.1-2.134.

Johansson, T. (2018). Testing for control system interdependence with structural
equation modeling: Conceptual developments and evidence on the levers of
control framework. Journal of Accounting Literature, 41, 47e62. https://doi.org/
10.1016/j.acclit.2018.02.002.

Kretschmer, T., Miravete, E. J., & Pernίas, J. C. (2012). Competitive pressure and the
adoption of complementary innovations. The American Economic Review, 102,
1540e1570. https://doi.org/10.1257/aer.102.4.1540.

Matejka, M., & Ray, K. (2017). Balancing difficulty of performance targets: Theory
and evidence. Review of Accounting Studies, 22, 1666e1697. https://doi.org/
10.1007/s11142-017-9420-4.

Milgrom, P., & Roberts, J. (1995). Complementarities and fit strategy, structure, and
organizational change in manufacturing. Journal of Accounting and Economics,
19, 179e208. https://doi.org/10.1016/0165-4101(94)00382-F.

Miravete, E. J., & Pernias, J. C. (2006). Innovation complementarity and scale of
production. The Journal of Industrial Economics, 54, 1e29. https://doi.org/
10.1111/j.1467-6451.2006.00273.x.

Moers, F. (2006). Performance measure properties and delegation. The Accounting
Review, 81, 897e924. https://doi.org/10.2308/accr.2006.81.4.897.

Otley, D. (2016). The contingency theory of management accounting and control:
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